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1 Affine algebraic varieties

1.1 Basic definitions

Throughout, let K be an algebraically closed field.

Definition 1.1. Affine n-space is Kn, also denoted An.

Definition 1.2. An algebraic set in Kn (or An) is the set of common zeros of a collection
of polynomials in the polynomial ring K[x1, . . . , xn].

Definition 1.3. Let U be a set and let A be a K-algebra of functions U → K, and let
x ∈ U . The evaluation map associated to x is

evx : A→ K evx(f) = f(x)

This is a K-algebra homomorphism.

Definition 1.4. An abstract affine algebraic variety is a pair (U,A) where U is a set
and A is a K-algebra of functions U → K satisfying the following three properties.

1. A is a finitely generated K-algebra.

2. A separates points of U . That is, given any two distinct points x, y ∈ U , there exists
a function f ∈ A such that f(x) 6= f(y).

3. Every K-algebra homomorphism φ : A → K is the evaluation map at some point
x ∈ U . That is, φ = evx for some x ∈ U , which is to say, φ(f) = f(x) for all f ∈ A.

Note that condition 2 implies that the point x in condition 3 is unique. Thus there is a
bijection

{points in U} ←→ {K-algebra homomorphisms A→ K}
x 7−→ evx

We usually abbreviate and refer to an abstract affine algebraic variety just as an affine
variety.

Example 1.5. The pair (Kn, K[x1, . . . , xn]) is an affine variety.

Example 1.6. Let V ⊂ Kn be an algebraic set. Let K[x1, . . . , xn]
∣∣
V

denote the algebra of

polynomial functions restricted to V . Then (V,K[x1, . . . , xn]
∣∣
V

) is an affine variety. (This is
not immediate, it requires the Hilbert Nullstellensatz.)

Example 1.7. Let A be a finitely generated K-algebra with no nilpotent elements. Because
A is finitely generated, for some n > 0, there exists a surjection K[x1, . . . , xn] � A. Let
I ⊂ K[x1, . . . , xn] be the kernel of this map, and let

V = {(a1, . . . , an) ∈ An | f(a1, . . . , an) = 0 ∀f ∈ I}

Then (V,A) is an affine variety. (As with the previous example, this is not immediate, but
requires the Nullstellensatz.)
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1.2 Morphisms

Definition 1.8. Let (U,A) and (V,B) be affine varieties. Temporarily denote the K-algebra

of all functions U → K by Ã. Given a set map f : U → V , the pullback of f is the map

f ∗ : B → Ã φ 7→ φ ◦ f f ∗(φ) = φ ◦ f

A morphism of affine varieties f : (U,A)→ (V,B) is a set map f : U → V such that the
image of f ∗ is contained in A, that is, f ∗ is a map B → A.

Remark 1.9. Let f : (U,A) → (V,B) be a morphism of affine varieties, and let u ∈ U .
Then f(u) is a point in V , so it corresponds to an evaluation map evf(u) : V → K. In
particular, for φ ∈ V , we have

evf(u)(φ) = φ(f(u)) = (f ∗φ)(u) = evu ◦f ∗(φ)

Thus
evf(u) = evu ◦f ∗

One consequence of this is that f is determined by f ∗.

Remark 1.10. Affine varieties along with their morphisms as we have defined them form
a category. This is just a fancy way of saying that the composition of two morphisms is a
morphism.

Lemma 1.11. Let (U,A) be an affine variety. Every f ∈ A is a morphism of varieties
f : (U,A)→ (K,K[x]).

Proof. We just need to check that f ∗ is a map K[x] → A. Let g ∈ K[x], viewed as a map
K → K,λ 7→ g(λ). So we have a map f ∗(g) : U → K, and we just need to verify that
f ∗(g) ∈ A.

f ∗(g)(u) = g(f(u))

Since g is a polynomial, g(f(u)) is a polynomial in f(u), so f ∗(g) is a polynomial in f . Since
f ∈ A and A is a K-algebra, f ∗(g) ∈ A, hence f is a morphism of varieties.

1.3 Subvarieties

Definition 1.12. Let (V,A) be an affine variety, and let V ′ ⊂ V . Let

A|V ′ = {f |V ′ | f ∈ A}

Note that we have a morphism of K-algebras

res : A→ A|V ′ f 7→ f |V ′

If (V ′, A|V ′) is an affine variety, we call it a subvariety of (V,A).

Lemma 1.13. Let (V,A) be an affine variety, and V ′ ⊂ V . Then (V ′, A|V ′) is a subvariety
if and only if V ′ is a set of zeros (in V ) of a collection of elements of A.
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Proof. ( ⇐= ) Suppose V ′ is the set of common zeros of some subset I ⊂ A. If V ′ is any
subset of V , then it is clear that A|V ′ is finitely generated. It is also easy to see that A|V ′
separates points of V ′, as follows: if x, y ∈ V ′ are distinct points in V ′, there exists f ∈ A so
that f(x) 6= f(y), and then f |V ′(x) 6= f |V ′(y).

For the third property, let φ : A|V ′ → K be a K-algebra homomorphism. Then the
composition φ ◦ res : A→ K is a K-algebra homomorphism, so there exists x ∈ V such that
φ ◦ res = evx. That is, for f ∈ A,

φ (f |V ′) = φ ◦ res(f) = evx(f) = f(x)

All that remains to show is that x ∈ V ′. Let g ∈ I, that is, res g = g|V ′ = 0. Then

g(x) = φ (g|V ′) = φ(0) = 0

Thus any function which vanishes on V ′ vanishes at x. Since by definition V ′ is the set of
common zeros of A′, x ∈ V ′.

( =⇒ ) Conversely, suppose that (V ′, A|V ′) is a subvariety. Define

I = {f ∈ A | f |V ′ = 0}

It is clear that V ′ is contained in the common zero set of I; we just need to check that I
has no “extra” common zeros outside V ′, that is, we need to show that if x ∈ V such that
f(x) = 0 for all f ∈ I, then x ∈ V ′. So let x ∈ V with f(x) = 0 for all f ∈ I. Define

φ : A|V ′ → K f |V ′ 7→ f(x)

We need to verify that this is well-defined. If f, g ∈ A such that f |V ′ = g|V ′ , then (f−g)|V ′ =
0, so by definition of x,

φ (f |V ′)− φ (g|V ′) = f(x)− g(x) = (f − g)(x) = 0

Hence φ is well defined (it is also clearly a K-algebra homomorphism). Since (V ′, A|V ′) is
a variety, φ is an evaluation map at some y ∈ V ′. It also makes the following diagram
commute.

A K

A|V ′

evx

res
φ=evy

We claim x = y. If not, then by the separation axiom, there exists f ∈ A such that
f(x) 6= f(y). On the other hand,

f(y) = f |V ′(y) = evy ◦ res(f) = evx(f) = f(x)

which is a contradiction. Thus x = y, so x ∈ V ′.

Definition 1.14. Let (V,A) be an affine variety. Let f ∈ A. The principal open affine
subset associated to f is

Vf = {x ∈ V | f(x) 6= 0}
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We haven’t yet defined a topology on V , but this will be an open set once we do. Alterna-
tively, one can take the sets Vf as basic open subsets and define the topology in this way. It
is clear that the sets Vf cover V . All that is needed is to check that for every pair Vf , Vg,
and every element x ∈ Vf ∩ Vg, there is another principal open affine subset Vh such that
x ∈ Vh ⊂ Vf ∩ Vg.

Example 1.15. The pair (Vf , Af ) is an affine variety, where Af denotes the localization of
A at the subset {1, f, f 2, . . .}. Note that

Af ∼= A[z]/(zf − 1)

Lemma 1.16. Let f : (U,A)→ (V,B) be a morphism of affine varieties.

1. Let I = ker f ∗. Then

f(U) = {v ∈ V | evv(g) = 0, ∀g ∈ I}

2. If f ∗ : B → A is surjective, then (f(U), B|f(U)) is a subvariety of (V,B) and f :
(U,A)→ (f(U), B|f(U)) is an isomorphism. In particular, f : U → V is injective as a
set map.

Proof. (1) The inclusion ⊂ follows from the fact that evf(u) = evu ◦f ∗, noted in Remark 1.9.
For the reverse inclusion, suppose v ∈ V such that evv(g) = 0 for all g ∈ I. Then evv factors
through A, as in the following diagram.

B K

A ∼= B/I

f∗

evv

evv

By property 3 of affine varieties, evv = evu for some u ∈ U . But then

ef(u) = eu ◦ f ∗ = evv

so by uniqueness, v = f(u).
(2) By (1) and Lemma 1.13, (f(U), B|f(U)) is a subvariety of (V,B). Note that B|f(U)

∼=
B/I. Since f ∗ : A→ B/I is an isomorphism, let g∗ : B/I → A be its inverse, which defines
a morphism g : (f(U), B/I)→ (U,A), and it is clear that g, f are inverses.

Proposition 1.17. Any affine variety is isomorphic to a subvariety of (An, K[x1, . . . , xn])
for some n.

Proof. This is immediate from Lemma 1.16. Give (U,A), take a surjective morphismK[x1, . . . , xn]→
A, and us the lemma to obtain a morphism (U,A) → (An, K[x1, . . . , xn]) which is an iso-
morphism onto its image.
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1.4 Products

Definition 1.18. Let (U,A) and (V,B) be affine varieties. We define their product to be
(U × V,A⊗K B). Henceforth we will usually omit the subscript K in tensor products when
it will not create confusion.

Lemma 1.19. The product (U × V,A⊗B) is an affine variety.

Proof. It is clear that A⊗B is finitely generated. For the separation axiom, let (x1, y1) and
(x2, y2) be distinct points in U × V . Without loss of generality, assume x1 6= x2. Then there
exists f ∈ A such that f(x1) 6= f(x2), so f ⊗ 1 separates the points (x1, y1) and (x2, y2). A
parallel argument works if y1 6= y2.

It just remains to show that any K-algebra homomorphism A ⊗ B → K is an evalua-
tion map. Let φ : A ⊗ B → K be a K-algebra homomorphism. Consider the K-algebra
homomorphisms

A→ A⊗B a 7→ a⊗ 1

B → A⊗B b 7→ 1⊗ b

and the respective compositions with φ, which give maps

A→ K a 7→ φ(a⊗ 1)

B → K b 7→ φ(1⊗ b)

These maps must be evaluation maps, so there exist unique x ∈ U, y ∈ V such that

evx : A→ K evx(a) = φ(a⊗ 1)

evy : B → K evy(b) = φ(1⊗ b)

Consider the map

ψ : A×B → K (a, b) 7→ ev(x,y)(a⊗ b) = evx(a) evy(b)

This is a K-balanced map, so by the universal property of the tensor product, there is a
unique map A⊗ B → K making the following diagram commute. By uniqueness, this map
is ev(x,y).

A×B A⊗B

K
ψ

⊗

ev(x,y)

We want to show that φ = ev(x,y). Because of uniqueness, it suffices that to show that φ
makes this diagram commute as well. At least for tensors of the form a⊗ 1, 1⊗ b ∈ A⊗B,
it is clear that φ ◦ ⊗ agrees with ψ.

φ(a⊗ 1) = evx(a) = evx(a) evy(1) = ψ(a, 1)φ(1⊗ b) = evy(b) = evx(1) evy(b) = ψ(1, b)

Since such tensors generate A⊗B as a K-algebra, this implies φ ◦ ⊗ = ψ.
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Remark 1.20. The product variety has the usual universal property of categorial products.
There are canonical maps π1 : (U × V,A⊗ B)→ (U,A) and π2 : (U × V,A⊗ B)→ (V,B),
and if (W,C) is an affine variety with morphisms (W,C) → (U,A) and (W,C) → (U,A),
then there is a unique morphism (W,C) → (U × V,A ⊗ B) making the following diagram
commute.

(W,C)

(U,A) (U × V,A⊗B) (V,B)π1 π2

Once we have defined topologies, it will make sense to note that π1, π2 are open maps (that
is, the associated set maps U × V → U and U × V → V are open maps).

1.5 Tangent spaces

The material in this section was not covered in the course, but added by the note taker in
retrospect.

The definitions in this section are not standard for varieties. In fact, it is difficult to find
any modern sources on algebraic geometry which do not take the perspective of schemes
and define tangent spaces in that language. Since these notes do not use the language of
schemes, I wanted a more “affine” definition of tangent spaces.

I have modeled this on the definition of tangent spaces for real manifolds, which are
defined in terms of derivations. Because I don’t have a source for this, I might be “wrong,”
in the sense that these definitions do not agree with the standard scheme-theoretic definition
of tangent spaces.

Definition 1.21. Let (V,A) be an abstract affine variety. Fix v ∈ V . A derivation of A
at v is a K-linear map D : A→ K satisfying the Leibniz rule satisfying

D(ab) = D(a)b(v) + a(v)D(b)

for all a, b ∈ A. Note the above is an equality in K. Set

Derv = {D : A→ K|D is a derivation at v}

Given two derivations D,D′ of A at v, we define their sum by

(D +D′)(a) = D(a) +D′(a)

and for λ ∈ K, we define
(λD)(a) = λ(D(a))

This makes Derv into a K-vector space. We define the tangent space of V at v to be Derv.
Henceforth, we will refer to the tangent space by TvV instead of Derv.

Remark 1.22. This definition of tangent space unfortunately lacks any sense of the geometry
implied by the use of the word “tangent.” But we’re living in the world of abstract algebraic
varieties, with emphasis on abstract and algebraic, so this is just what we have to deal with.
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Definition 1.23. Let α : (U,K[U))→ (V,K[V ]) be a morphism of algebraic varieties, and
let u ∈ U . The differential of α at u is the induced map

(dα)u : TuU → Tα(u)V D 7→ (f 7→ D(f ◦ α))

where f ∈ K[V ]. We can also write this as

(dα)u(D)(f) = D(f ◦ α)

To help keep things straight, we give the following list of the maps above with their domains
and ranges.

Location Domain and range
α ∈ Hom(U, V ) α : U → V
D ∈ TuU D : K[U ]→ K
f ∈ K[V ] f : V → K
f ◦ α ∈ K[U ] f ◦ α : U → K
D(f ◦ α) ∈ K
(dα)u(D) ∈ Tα(u) (dα)u(D) : K[V ]→ K

To fulfill all righteousness, one should really verify that (dα)u(D) is a derivation at f(u),
that is, checking that it is K-linear and satsifies the Leibniz rule. These aren’t that hard to
check, but I’m not feeling it right now.

Example 1.24. We give a somewhat pathological example of how the differential of a
morphism might fail to be “well-behaved,” in the sense that it is not what we expect. Let
K be a field of characteristic p > 0 (still algebraically closed), and consider the affine line
A1 over K. Then we have a morphism of varieties

Frob : A1 → A1 x 7→ xp

Actually, this is a morphism of algebraic groups, but that won’t make sense until later. In
any case, we claim that for v ∈ A1, (dFrob)v = 0. Let D ∈ TvA1 and f ∈ K[A1] ∼= K[x].
Note that f ◦ Frob(x) = f(xp) = f(x)p so f ◦ Frob = fp.

(dFrob)v(D)(f) = D(f ◦ Frob) = D(fp)

Using the Leibniz rule repeatedly with a sprinkling of induction,

D(fp) = D(f)fp−1(v) + f(v)D(fp−1)

= D(f)fp−1(v) + fp−1(v)D(f) + f 2(v)D(f)

= · · ·
= pD(f)fp−1(v)

= 0

Thus (dFrob)v(D)(f) = 0 for all D and all f , so (dFrob)v(D) = 0 for all D, so (dFrob)v = 0.
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Remark 1.25. Let α : U → V be a morphism of varieties. Provisionally, we might define
the “tangent bundle” of U by

TU =
⊔
u∈U

TuU

Ideally, we would make TU into a variety which is a sort of fiber bundle over U , and possible
there should be some sort of gluing conditions, but we’ll ignore this. At least, it is clear
there is a “projection”

TU → U x ∈ TuU, x 7→ u

Presumably, with the right setup, it would make sense to talk about the “total differential”
of α, which should be something which restricts to (dα)u on the fiber TuU .

dα : TU → TV (dα)|TuU = (dα)u

We’re not going to do anything with this, but it’s a nice way to talk about all the differentials
at the same time.

2 Affine and linear algebraic groups

2.1 Definitions and examples

Definition 2.1. An affine algebraic group is a pair (G,A) such that (G,A) is an affine
algebraic variety, G is a group, and the group operations

G×G m−→ G (x, y) 7→ xy

G
i−→ G x 7→ x−1

are morphisms of affine varieties. That is, m∗ : A→ A⊗ A and i∗ : A→ A.

Example 2.2. Let V be an n-dimensional vector space over K. Fixing a basis of V gives
an isomorphism GL(V ) ∼= GL(n,K). Then (GL(V ), K[x11, . . . , xnn]det) is an affine algebraic
group, as we now explain.

Think of the variables xij for 1 ≤ i, j ≤ n as tracking the n2 entries of a matrix (xij) ∈
GL(n,K). The subscript det means that the polynomial ring K[xij] has been localized at the
multiplicative set {1, d, d2, . . .} where d is the expression for the determinant as a polynomial
in the xij.

Let us justify why the multiplication map GL(V ) × GL(V ) → GL(V ) is a morphism of
varieties, at least in cases of small values of n. We need to verify that m∗ is a map

m∗ : K[zij]det → K[xij]det ⊗K[yij]det

In the case n = 1, m is just the multiplication map K× ×K× → K×, so m∗ is the map

m∗ : K

[
z,

1

z

]
→ K

[
x,

1

x

]
⊗K

[
y,

1

y

]
z 7→ x⊗ y
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In the case n = 2, m : GL(2, K)×GL(2, K)→ GL(2, K) is the map(
x11 x12
x21 x22

)
,

(
y11 y12
y21 y22

)
7→
(
x11y11 + x12y21 x11y12 + x12y22
x21y11 + x22y21 x21y12 + x22y22

)
so m∗ : K[zij]det → K[xij]det ⊗K[yij]det is the map

z11 7→ x11 ⊗ y11 + x12 ⊗ y21
z12 7→ x11 ⊗ y12 + x12 ⊗ y22

etc.

One can check that z11z22−z12z21 gets mapped to an invertible element in the tensor product,
but this is tedious. By sufficient waving of hands, this generalizes to any n, so multiplication
is a morphism of varieties. Inversion is a morphism of varieties basically because of Cramer’s
rule.

Definition 2.3. The case of G = GL(1, K) is denoted Gm (which is isomorphic to K×).
When viewing K as an additive group, it is also an algebraic group, denoted Ga.

Example 2.4. As above, let V be an n-dimensionalK-vector space. Then (SL(V ), K[xij]det/(det−1))
is a subvariety of GL(V ).

Example 2.5. LetDn ⊂ GL(n,K) be the subgroup of diagonal matrix, that is, Dn
∼= (K×)n.

Then (
Dn,

K[xij]det�xij, i 6= j

)
is a subvariety of GL(V ).

Definition 2.6. Let V be a finite dimensional K-vector space. A linear algebraic group
is an affine subvariety of GL(V ) which is also a subgroup.

2.2 Every algebraic group is linear

Remark 2.7. Let (G,A) be an affine algebraic group, so we have morphisms of varieties

m : G×G→ G i : G→ G

which correspond to K-algebra homomorphisms

m∗ : A→ A⊗ A i∗ : A→ A

Fix x ∈ G, and consider the right multiplication map

ρx : G→ G y 7→ m(y, x) = yx

which is an automorphism of G as a variety (though it is not a group homomorphism). Thus
ρx induces a K-algebra automorphism of A

ρ∗x : A→ A f 7→ ρ∗x(f) = (y 7→ f(yx)) ρ∗x(f)(y) = f ◦ ρx(y) = f(yx)
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Note that
ρxy = ρy ◦ ρx (ρxy)

∗ = ρ∗x ◦ ρ∗y
so we have a homomorphism of groups

ρ∗ : G→ Aut(A) x 7→ ρ∗x

Alternately, repeating the same story with the left multiplication map

λx : G→ G y 7→ xy

yields a group homomorphism

λ∗ : G→ Aut(A) x 7→ λ∗x

Let A be a K-algebra. Given a collection of elements in A, we can talk about the subalgebra
of A that they generate, or we can talk about the K-vector subspace they generate (span),
and these are not in general the same. The subalgebra generated by a subset contains the
span, but the span may be strictly smaller. In fact, it may be much much smaller. For
example, in the polynomial ring K[x], the subalgebra generated by 1, x is all of K[x], which
is an infinite dimensional K-vector space, but the span of 1, x is just a two dimensional
space. To distinguish these types of generation, we introduce some notation.

Definition 2.8. Let A be a K-algebra and let S ⊂ A be a subset of elements. The subalgebra
generated by S is denote 〈S〉, and the vector subspace generated by S is denote 〈S〉K . Note
that 〈S〉K ⊂ 〈S〉, but the inclusion is often strict.

Lemma 2.9. Let V be a K-vector space, and let

v =
n∑
i=1

ui ⊗ wi ∈ V ⊗ V

such that n is minimal (v cannot be written as a sum of a smaller number of simple tensors).
Then {u1, . . . , un} and {w1, . . . , wn} are both linearly independent sets.

Proof. If some uj can be written as a linear combination of the other ui, then that relation
can reduce the number of terms needed to write v. Apply the same argument for the wi.

Lemma 2.10. Let (G,A) be an algebraic group, and keep the notation ρ∗x, etc. from the
previous remark. Fix f ∈ A, and let

B = 〈ρ∗xf | x ∈ G〉K

Then B is finite dimensional over K.

Proof. If f = 0, there is nothing to prove, since in this case B = 0, so we may assume f 6= 0.
We have m∗f ∈ A⊗ A, so write it as a sum of simple tensors,

m∗f =
n∑
i=1

gi ⊗ hi

13



with gi, hi ∈ A and n minimal. By the previous lemma, {g1, . . . , gn} and {h1, . . . , hn} are
linearly independent sets. We claim that this implies there exist elements x1, . . . , xn ∈ G
such that

det
(
hi(xj)

)
6= 0

Note that hi(xj) ∈ K, so this is just a matrix with entries in K. We prove our claim
by induction. The case n = 1 is obvious. If we have x1, . . . , xn−1 ∈ G such that the
(n−1)×(n−1) matrix

(
hi(xj)

)
has nonzero determinant, then view it as an (n−1)×(n−1)

minor of the n× n matrix
(
hi(xj)

)
.

Now consider the following determinant, thought of as having entries in A, where X is a
variable. The first n− 1 columns have entries in K, though we think of K as a subset of A,
so this is fine. We think of X as a variable which we can plug in values in G, so the following
determinant is a function G→ K.∣∣∣∣∣∣∣∣∣∣∣

h1(x1) · · · h1(xn−1) h1(X)
h2(x1) · · · h2(xn−1) h2(X)

...
. . .

...
...

hn−1(x1) · · · hn−1(xn−1) hn−1(X)
hn(x1) · · · hn(xn−1) hn(X)

∣∣∣∣∣∣∣∣∣∣∣
If this function vanishes for all X ∈ G, then the functions h1, . . . , hn would be linearly
dependent, which they are not, so there exists some xn ∈ G making this not vanish. This
proves our claim. We return to proving that B is finite dimensional. For y ∈ G, we have

ρ∗yf(x) = f(xy) =
n∑
i=1

gi(x)hi(y) =

(
n∑
i=1

hi(y)gi

)
(x)

thus

ρ∗yf =
n∑
i=1

hi(y)gi (2.1)

In particular, for each j,

ρ∗xjf =
n∑
i=1

hi(xj)gi

Since the determinant det
(
hi(xj)

)
is nonzero, it gives a change of basis between {g1, . . . , gn}

and
{
ρ∗x1f, . . . , ρ

∗
xnf
}

. In particular, they are bases for the same space, and since all of the
ρ∗xjf lie in B (by construction of B), we get g1, . . . , gn ∈ B. By equation 2.1, the gi span all
of B, so {g1, . . . , gn} is a K-basis of B, and dimK B = n.

Next we introduce a way of dealing with matrix groups which is closer to being coordinate-
free. Recall that if V is a K-vector space, the dual space of V , denoted V ∗, is the vector
space of K-linear maps V → K. Elements of V ∗ are sometimes called linear functionals.

Definition 2.11. Let V be a finite dimensional K-vector space. For v ∈ V, a∗ ∈ V ∗, the
matrix coefficient associated to v, a∗ is the function

mv,a∗ : GL(V )→ K mv,a∗(T ) = a∗(T (v))

14



Note the following two immediate identites.

mv+v′,a∗ = mv,a∗ +mv′,a∗ mv,a∗+b∗ = mv,a∗ +mv,b∗

for v, v′ ∈ V, a∗, b∗ ∈ V ∗. These identiies say that we have a bilinear map

V × V ∗ → HomK(GL(V ), K) (v, a∗) 7→ mv,a∗

The HomK means homomorphisms of K-vector spaces. Note that this m has nothing to do
with group multiplication m : G×G→ G, it’s just an unfortunate double usage of the letter
m.

Remark 2.12. Let V be a finite dimensional K-vector space, and let Ã be the algebra of
K-valued functions GL(V )→ K. Let A′ ⊂ Ã be the subalgebra generated by all mv,a∗ .

A′ = 〈mv,a∗ | v ∈ V, a∗ ∈ V ∗〉 ⊂ Ã

Let det ∈ A′ be the determinant function, and let A = A′det (this subscript means localization
at the subset

{
1, det, det2, . . .

}
). Then (GL(V ), A) is an affine algebraic group. It is a

“coordinate-free” version of the group (GLn(K), K[xij]det) introduced earlier.
We give some mild attempt to justify why (GL(V ), A) is an affine algebraic group. The

main point is the at a K-algebra homomorphism A→ K amounts to choosing values for the
generators mv,a∗ for all v ∈ V, a∗ ∈ V ∗. Given values for mv,a∗ , using the equation

mv,a∗(T ) = a∗(T (v))

for all v, a∗, this determines T . So a K-algebra homomorphism A → K determines an
element T ∈ GL(V ).

Lemma 2.13. Let (G,A) be an affine algebraic group, and let B ⊂ A be a finite dimensional
subspace that is invariant under ρ∗G

1. Define

α : G→ GL(B) x 7→ α(x) = ρ∗x|B

1. Then α is a morphism of affine algebraic groups 2.

2. The matrix coefficients mv,a∗ of G pulled back via α span the same linear space as
λ∗G(B). That is,

〈mv,a∗ ◦ α |v ∈ V, a∗ ∈ V ∗〉K = 〈λ∗G(B)〉K = 〈λ∗x(v) | x ∈ G, v ∈ B〉K

Proof. (1) Let v ∈ B, a∗ ∈ B∗, and consider the matrix coefficient

mv,a∗ : GL(B)→ K T 7→ a∗(T (v))

1This means that for x ∈ G, ρ∗x : A→ A maps B to itself.
2GL(B) has the associated algebra from the previous remark, generated by matrix coefficients mv,a∗ for

v ∈ B, a∗ ∈ B∗
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We also have multiplication m : G×G→ G and m∗ : A→ A⊗ A. For v ∈ B, write m∗(v)
as

m∗(v) =
n∑
i=1

gi ⊗ hi

with gi, hi ∈ A and with n minimal. Then {g1, . . . , gn} and {h1, . . . , hn} are linearly inde-
pendent, and from previous work (Lemma 2.10 and the proof of that lemma) we know
that {g1, . . . , gn} is a basis of 〈ρ∗y(v) | y ∈ G, v ∈ B〉K and {h1, . . . , hn} is a basis of
〈λ∗y(v) | y ∈ G, v ∈ B〉K .

To show that α is a morphism of algebraic groups, it suffices to show that α∗ gives a
K-algebra homomorphism from the algebra associated to GL(B) to A, that is, it suffices to
show that each matrix coefficient mv,a∗ (for v ∈ B, a∗ ∈ B∗) pulls back to a regular function
on G (an element of A), and that α∗ maps the determinant to an invertible element, which
is to say, we must verify that 1

det
pulls back to a regular function on G as well. Now let

y ∈ G, v ∈ B, a∗ ∈ B∗. As in the Lemma 2.10,

α∗(mv,a∗)(y) = mv,a∗ ◦ α(y) = mv,a∗(α(y)) = a∗
(
α(y)(v)

)
= a∗

(
ρ∗y|B(v)

)
= a∗

(
n∑
i=1

hi(y)gi

)
so

mv,a∗ ◦ α =
n∑
i=1

a∗(gi)hi (2.2)

Thus mv,a∗ ◦ α is a linear combination of the hi, which lie in A. So mv,a∗ pulls back to a
regular function. Now we check that 1

det
also pulls back to a regular function. Let y ∈ G.

Then
1

det
◦ α(y) = det(α(y−1)) = det ◦α ◦ i(y)

where i : G→ G is the inversion map. Thus 1
det
◦ α = det ◦α ◦ i, which is a regular function

on G, so this completes the argument that α is a morphism of varieties. Now for (2), we
need to show that

〈mv,a∗ ◦ α〉K = 〈λ∗G(B)〉K
By equation 2.2, the left side is equal to the span of {h1, . . . , hn}. So to show the inclusion
⊂ it suffices to show hi ∈ 〈λ∗G(B)〉K . By definition of gi, hi,

m∗(v) =
n∑
i=1

gi ⊗ hi =⇒ v(yx) =
n∑
i=1

gi(y)hi(x) =
(∑

gi(y)hi

)
(x)

so

λ∗y(v) =
n∑
i=1

gi(y)hi =⇒ hi ∈ 〈λ∗G(B)〉K (2.3)

Thus
〈mv,a∗ ◦ α〉K ⊂ 〈λ∗G(B)〉K

Also by equation 2.3, λ∗y(v) is in the span of the hi, so the reverse inclusion also holds.

Proposition 2.14. Every affine algebraic group is (isomorphic to) a linear algebraic group.
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Proof. Let (G,A) be an affine algebraic group. Let {1 = f1, f2, . . . , fn} be a fintie set of
generators for A as a K-algebra. Let

B = 〈ρ∗xfi | i = 1, . . . , n, x ∈ G〉K

By Lemma 2.10, for a fixed i, the span of ρ∗xfi for x ∈ G is finite dimensional, and B is a
union of finitely many of those, so B is finite dimensional. Also, it is clear that B is invariant
under ρ∗G. Then by Lemma 2.13, we have a homomorphism of affine algebraic groups

α : G→ GL(B)

By the second part of Lemma 2.13,

〈α∗(mv,a∗) = mv,a∗ ◦ α〉K = 〈λ∗G(B)〉K

Let W denotes this subspace of A. So the image of α∗ is a K-subalgebra of A containing W .
But also, each fi ∈ W , since

λ∗e(fi) = fi ◦ λe = fi ∈ λ∗G(B) ⊂ W

where e ∈ G is the identity. Thus imα∗ is a subalgebra of A containing a full set of generators
f1, . . . , fn of A, so imα∗ = A. Then by Lemma 1.16, α gives an isomorphism of G with its
image, so G is (isomorphic to) a subvariety of GL(B).

2.3 Zariski topology

Definition 2.15. Let (V,A) be an affine variety. Let

F = {Z ⊂ V | Z is a set of common zeros of a collection of elements in A}

We claim that F satisfies the axioms to be the collection of closed sets for a topology on V .
For the sake of notation, for f ∈ A, let Z(f) denote the set of zeros of f . It is clear that
∅, V ∈ F . Given a subset {Zα} ⊂ F , the intersection

⋂
α Zα is the set of zeros of all elements

of all the elements defining each Zα, so
⋂
α Zα ∈ F . Finally, given F1, F2 ∈ F , write each as

F1 =
⋂
α

Z(fαi ) F2 =
⋂
α

Z(fα2 )

then
F1 ∪ F2 =

⋂
α,β

Z(fα1 f
β
2 )

This last equality requires some proof, but I’m too lazy right now. So F satisfies the axioms,
and the topology defined by taking F to be the closed sets on V is the Zariski topology
on V .

Lemma 2.16. Morphisms of affine varieties are continuous with respect to the Zariski topol-
ogy.
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Proof. Let α : (U,A)→ (V,B) be a morphism of affine varieties. To show that it is contin-
uous, it suffices to show that the preimage of a closed set is closed. Let Z ⊂ V be a closed
set, so Z is the common zero locus of a collection {fi} ⊂ B.

Z =
⋂
i

Z(fi)

For each fi ∈ B, then

α−1(Z(fi)) = {u ∈ U : fi(α(u)) = α∗fi(u) = 0} = Z(α∗fi)

Thus

α−1(Z) = α−1

(⋂
i

Z(fi)

)
=
⋂
i

α−1 (Z(fi)) =
⋂
i

Z(α∗fi)

Since α is a morphism of varieties, α∗fi ∈ A, so the preimage of the closed set Z is a closed
set.

Lemma 2.17. Let α : (U,A)→ (V,B) be a morphism of varieties such that the image of α
is dense, that is, α(U) = V . Then α∗ : B → A is injective.

Proof. Let f ∈ B such that α∗(f) = 0.

U V Kα

α∗f

f

This means that for u ∈ U ,
α∗(f)(u) = f ◦ α(u) = 0

Thus f |α(U) = 0. By Lemma 1.11, f is a morphism of varieties, so it is continuous by the
previous lemma. Since α(U) is dense in V , f is a continuous function which vanishes on a
dense subset, which forces f = 0. Hence α∗ is injective.

2.4 Irreducible components

Recall that the Hilbert basis theorem says that a finitely generated K-algebra is Noetherian
(as a ring).

Definition 2.18. Let X be a topological space.

1. X is Noetherian if it satisfies the descending chain condition on closed subsets (or
equivalently, the ascending chain condition on open subsets).

2. X is irreducible if it is not a union of two proper closed subsets. If X is not irreducible,
it is reducible.

3. A subset Y ⊂ X is irreducible if it is irreducible with respect to the subspace topology.

18



Remark 2.19. Irreducibility is not very interesting in many topological spaces. On a smooth
manifold (over R or C) with the usual Euclidean charts topology, the only irreducible sub-
spaces are individual points. Loosely speaking, this is because those topologies have an
abundance of closed sets. Irreducibility is only interesting when the topology is rather
coarse, when it has “not so many” closed subsets. The Zariski topology on a variety is an
example where there are not as many closed sets, so irreducibility becomes a useful notion.

Remark 2.20. In general an irreducible space is always connected, but the converse is not
true (in the general case, it may happen).

Lemma 2.21. Let (V,A) be an affine variety. Then V is irreducible if and only if A is an
integral domain.

Proof. ( =⇒ ) Suppose A is not an integral domain, so there are zero divisors f, g ∈ A, with
f, g 6= 0. That is, V → K, x 7→ f(x)g(x) is the zero function. Then V = Z(f) ∪ Z(g) where
Z(f), Z(g) are proper (since f, g 6= 0) closed subsets, hence V is reducible.

( ⇐= ) Conversely, if V is reducible, write it as V = X ∪ Y with X, Y proper closed
subsets. Let X =

⋂
i Z(fi), Y =

⋂
j Z(gj). Since A is Noetherian, the ideals 〈fi〉, 〈gj〉 ⊂ A

are finitely generated, say by f1, . . . , fn and g1, . . . , gm respectively. Then f1 · · · fn|X = 0 and
g1 · · · gm|Y = 0 are both not the zero function on all of V , but

f1 · · · fng1 · · · gm = 0

on all of V . Which is to say, A has a zero divisor, so it is not an integral domain.

Theorem 2.22. Every Noetherian topological space can be expressed as a finite union of
closed irreducible subsets. If the number of such sets used is minimal, then the irreducible
subsets are maximal (among closed irreducible subsets of X).

Proof. Skipped. Exercise from Atiyah-MacDonald, done in commutative algebra class last
fall, see homework.

Definition 2.23. Let X be a Noetherian topological space, and write it as a finite union
of closed irreducible subsets, such that the number of them is minimal, so that they are
maximal irreducible subsets. The resulting sets are called irreducible components of X.

Corollary 2.24. Let (V,A) be an affine algebraic variety. Then V (with the Zariski topol-
ogy) is Noetherian (by Hilbert basis theorem), so V has a decomposition into irreducible
components.

Proof. This follows from the correspondence between radical ideals of A and closed subsets
of V , and the fact that prime ideals correspond to irreducible subets.

Proposition 2.25 (Components of an algebraic group). Let (G,A) be an affine algebraic
group and let G0 ⊂ G be the irreducible component containing the identity.

1. The irreducible components of G are pairwise disjoint, and are the connected compo-
nents of G.
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2. G0 is a normal subgroup of finite index, which is also a subvariety.

3. The irreducible components of G are the cosets of G0, so they are all isomorphic as
affine varieties.

Proof. (1) Let G1, G2 be irreducible components of G, and suppose x ∈ G1 ∩ G2. Any
automorphism of G (as a variety) permutes irreducible components, so by translating x to
any x′ ∈ G (which we can do because G acts transitively on itself) we see that every element
of G is in at least two irreducible components. We can also write G as a minimal union of
irreducible components G = X1 ∪X2 ∪ · · · ∪Xn, but then every element of Xn is contained
in some other component by what we just proved, contradicting minimality. So no element
can be in two components. Since each irreducible component is also connected, pairwise
disjointness implies that they are the connected components of G.

(2) Let x ∈ G0. Then xG0 is also an irreducible component, and x ∈ xG0, so xG0 = G0, so
G0 is closed unde rmultiplication. Similarly, (G0)−1 is an irreducible component containing
the identity, so it is G0. Thus G0 is a subgroup, and the irreducible components of G
are the cosets, proving (3). G0 has finite index because G has only finitely many irreducible
components. Also G0 is an affine subvariety, since it is closed (it is an irreducible component).
It is normal because for y ∈ G, yG0y−1 is an irreducible component containing the identity,
so it must be G0.

Example 2.26. Let K be an algebraically closed field, as always. GL(n,K) and SL(n,K)
are irreducible algebraic groups. (Maybe proved later?)

As a somewhat irrelevant contrast, consider the Lie group GL(n,R). It has two connected
components, the one containing the identity which is matrices with positive determinant,
and the other component is matrices with negative determinant. Don’t get too hung up on
this comparison, though, because as a Lie group this has a different topology than GL(n,K)
with the Zariski topology.

Definition 2.27. Let V be an n-dimensional K-vector space with a nondegenerate sym-
metric bilinear form B : V × V → V . Define the orthogonal group

O(V,B) = {T ∈ GL(V ) : B(T (v), T (w)) = B(v, w), ∀v, w ∈ V }

Alternately, we can think of this in terms of matrices. Fix a basis of V , so that the bilinear
form B can be represented by a matrix B̃ ∈ Mat(n,K), and the bilinear form is given by

B : V × V → V (v, w) 7→ wtB̃v

where the superscript t denotes tranpsoe. We can also represent T ∈ GL(V ) as a matrix

T̃ ∈ GL(n,K), that is,

T : V → V v 7→ T̃ v

In this language, the condition B(T (v), T (w)) = B(v, w) becomes

(T̃w)tB̃(T̃ v) = wtT̃ tB̃T̃ v = wtB̃v
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for all v, w ∈ V , which is equivalent to the condition

T̃ tB̃T̃ = B̃

So we get a version of O(V,B) in terms of coordinates, which we denote O(n,K,B).

O(V,B) ∼= O(n,K,B) =
{
T ∈ GL(n,K) : T tBT = B

}
Frequently B and K are understood, so this is just written O(n) or On.

Definition 2.28. The special orthogonal group is the subgroup of On with determimant
one.

SOn = {x ∈ On : detx = 1}

Example 2.29. On is reducible into two components, with SOn being the irreducible com-
ponent containing the identity. (Maybe proved later?)

Remark 2.30. Let (G,A) be an affine algebraic group.

1. G0 is the smallest subgroup of G with finite index. (This is easy later, using dimension.)

2. Any closed subgroup of finite index in G is open.

3. If S ⊂ G is closed under multiplication, then S is a subgroup.

Proofs of the above are left as exercises.

3 Group actions on varieties

In what follows, we often refer to an affine variety (V,A) just as V , with the associated
algebra A understood. When we need to refer to the algebra associated to a variety V , we
denote it by K[V ].

Definition 3.1. Let G be an affine algebraic group, and let V be an affine variety. G acts
on V as an algebraic group if there is a group action of G on V such that the structure
morphism

G× V → V (g, v) 7→ gv

is a morphism of varieties. In the future, when we say, “Let G be an algebraic group acting
on a variety V ,” we mean that it is acting as an algebraic group, not just as a group.

In order to obtain some basic results about algebraic groups acting on varieties, we pursue
a technical lemma involving some commutative algebra.
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3.1 Thick subsets of varieties

Definition 3.2. Let V be an affine variety, and let U ⊂ V be a subset. U is a thick subset
of V if U is irreducible, and U contains a dense open subset of U .

Note that U being thick does not have much to do with the ambient space V . Before we
prove the main lemma, we cite a result from commutative algebra.

Lemma 3.3. Let B ⊂ A be integral domains such that A is finitely generated as a B-algebra,
and let K be an algebraically closed field. Let f ∈ A, f 6= 0. Then there exists g ∈ B, g 6= 0
such that for any homomorphism

α : B → K

there is an extension α̃ : A→ K, that is, a morphism making the following triangle commute,
such that α̃(f) 6= 0.

A

B K

α̃

α

Proof. Probably somewhere in Atiyah-MacDonald [1].

Now for the main lemma. From first reading the statement of the lemma, it seems like it
should be a straightforward argument, but it is not so easy.

Lemma 3.4 (Thickness lemma). Let U, V be affine varieties and let α : U → V be a
morphism of varieties. Let U ′ ⊂ U be a thick subset. Then α(U ′) is a thick subset of V .

Proof. First we make three reductions. First, if the result holds in the case where U = U ′,
then α(U ′) is a thick subset of a subset of V , so it is stil a thick subset of V , so the general
case follows. So without loss of generality, we assume U = U ′, so U is irreducible because
U ′ is thick.

Since U ′ contains a dense open subset of U , it contains a principal open subset Uf =
{x ∈ U : f(x) 6= 0} (since they give a basis for the topology). Now we make our second
reduction: we may assume U ′ = Uf , since if the image of under α is thick for a principal
open subset, then the image of the larger set U ′ is also thick.

As a third reduction, we may assume V = α(U ′), since if α(U ′) is thick in α(U ′), it is
thick in any variety which as α(U ′) as a subvariety. Since U ′ is irreducible, its image α(U ′)
is irreducible, so V = α(U ′) is irreducible (the closure of an irreducible set is irreducible).

Summarizing, we have reduced to proving the lemma in the case where we have a mor-
phism α : U → V with U ′ = Uf ⊂ U for some f ∈ K[U ], where U = U ′ and V = α(U), and
U, V are irreducible. To show that α(U ′) is thick, it suffices to show that α(U ′) contains an
open subset, since we already know it is irreducible.

Because the image of α is dense in V , by Lemma 2.17, α∗ : K[V ] → K[U ] is injective.
Also recall that K[V ], K[U ] are integral domains because U, V are irreducible. Now we apply
Lemma 3.3 in the case A = K[U ], B = α∗K[V ]. Since U ′ = Uf is dense in U , f 6= 0. So by
the lemma, there exists g ∈ K[V ] such that α∗(g) 6= 0 and g 6= 0, satsifying the extension
property of the lemma. Consider the following principal open subset of V .

Vg = {v ∈ V : g(y) 6= 0}
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If we show that Vg ⊂ α(U ′), then the we are done. So let q ∈ Vg ⊂ V , so g(q) 6= 0. Consider
the composition

α∗K[V ] K[V ] K
(α∗)−1

∼=
evq

We know that
evq ◦(α∗)−1 ◦ α∗(g) = evq(g) = g(q) 6= 0

So by the properties of g given by the conclusion of Lemma 3.3, there exists an extesion
φ : A→ K making the following diagram commutes.

A = K[U ]

B = α∗K[V ] K

K[V ]

φ

evq ◦(α∗)−1

α∗ ∼=
evq

Since A = K[U ], the map φ is an evaluation map at some p ∈ U , so φ(f) = f(p) 6= 0. Note
that this implies p ∈ U ′ = Uf . We want to show that α(p) = q. To do this, it suffices to
show that evα(p) = evq as homomorphisms K[V ]→ K. For h ∈ K[V ],

evα(p)(h) = h(α(p)) = α∗(h)(p) = evp ◦α∗(h) = φ ◦ α∗(h) = evq ◦(α∗)−1 ◦ α∗(h) = evq(h)

Thus evα(p) = evq, so q = α(p). Thus Vg ⊂ α(U ′), and the proof is complete.

3.2 Applications of the thickness lemma

Corollary 3.5. Let G be a connected algebraic group acting on a variety V . Then every
orbit is open in its closure.

Proof. Let G.v be the orbit of v ∈ V . Consider the morphism

α : G→ V g 7→ g.v

Since G is connected, it is irreducible, so it is thick in itself. So by the previous lemma,
α(G) = G.v is thick in V . So α(G) contains an open subset of α(G), call it U . So for some
g0 ∈ G, g0.v ∈ U , so v ∈ g−10 .U . Then for all g ∈ G,

gg0.v ∈ gg−10 .U ⊂ G.U ⊂ G.v

Thus
G.v =

⋃
g∈G

g.U

Since U is open in G.v, the tranlates g.U are open in G.v, so G.v is a union of open subsets,
so it is open in G.v.
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Corollary 3.6. Let G be a connected algebraic group acting on a variety V , and let v ∈ V .
Then

G.v = (G.v)
⊔

(orbits of smaller dimension)

Proof. By the previous corollary, G.v is open in G.v, G.v \ G.v is a closed subset of the
irreducible set G.v, so it must have smaller dimension.

Corollary 3.7. Let G be a connected algebraic group acting on a variety V . Then orbits of
minimal dimension are closed, so closed orbits exist.

Proof. If an orbit G.v has minimal dimension, there are no orbits of smaller dimension, so
by the previous corollary G.v ⊂ G.v, which forces equality.

Remark 3.8. The previous corollaries do not actually require connectedness. This just
takes a reduction step added to the first of the three corollaries.

Lemma 3.9. Let f : U → V be a morphism of algebraic varieties, with U irreducible and
f(U) dense in V . Then for every v ∈ V ,

dim f−1(v) ≥ dimU − dimV

and equality holds for a dense open subset of V .

Proof. Omitted.

Proposition 3.10. Let α : G→ G′ be a morphism of algebraic groups. Then

1. α(G) is closed in G′

2. α(G0) = α(G)0

3. dimG = dim kerα + dim imα

Proof. (1) G acts on G′ via

G×G′ → G′ (a, b) 7→ α(a)b

which is an action as an algebraic group, because the map above factors as the following
composition, which is a morphism of varieties.

G×G′ G′

G′ ×G′
α×Id m

The orbits of this action are the cosets of α(G) in G′. So they are all isomorphic (as varieties).
So they all have the same dimension, so they have minimal dimension. Then since orbits of
minimal dimension are closed (Corollary 3.7), α(G) (and its cosets) are closed in G′.
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(Alternate proof of (1)) Consider the action of G0 on G′ via α as in the first proof. So
α(G)0 is open in its closure, since it is an orbit. Also α(G0) and hence α(G0) are irreducible.
For any x ∈ α(G0),

xα(G0)−1 ∩ α(G0) 6= ∅

since both are open (dense) subsets of α(G0). So for some y, z ∈ α(G0),

xy−1 = z x = zy

so x ∈ α(G0) so α(G0) = α(G). Then since α9G) is the union of cosets α(G0), α(G) is
closed.

(2) Since α(G) is closed, it is an algebraic (sub)group of G′. It is clear that α(G0) ⊂ α(G)0

since the image of the irreducible subset G0 must be irreducible, so it is contained in the
irreducible component containing the identity of G′.

For the reverse inclusion, note that G0 is a subgroup of G of finite index, so α(G0) is a
closed subgroup of α(G) of finite index. By Remark 2.30, a closed subgroup of finite index
contains the identity component, so α(G0) ⊃ α(G)0. Thus they are equal.

(3) By applying Lemma 3.9 to the morphism α : G0 → α(G0) = α(G)0, for every element
x′ ∈ G′,

dimG0 ≤ dimα−1(x′) + dimα(G)0

with equality holding on an open subset of G0. Since the fibers α−1(x′) are all cosets of
kerα ∩G0, they all have the same dimension, so the equality holds for all x′. In particular,
it holds for x′ equal to the identity of G′, so

dimG0 = dim
(
kerα ∩G0

)
+ dimα(G)0

Since G is a disjoint union of copies of G0, dimG = dimG0 and similarly dimα(G)0 =
dimα(G) = dim imα, and dim(kerα ∩ G0) = dim kerα, so this is the desired equality in
disguise.

dimG = dim kerα + dim imα

Example 3.11. We give an example where (1) of Proposition 3.10 fails in the case of an
algebraic group over a field which is NOT algebraically closed. Consider R× as an algebraic
group over the field R, and the morphism

R× → R× x 7→ x2

This is a morphism of algebraic groups, but the image (which is R>0) is not closed (in the
Zariski topology).

4 Linear algebra - Jordan decomposition for GL(V )

Since we showed that every algebraic group is a subgroup of GL(V ), it makes sense to study
some linear algebra at this point.
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4.1 Preliminaries

Fix an algebraically closed field K.

Definition 4.1. Let V be a finite dimensional K-vector space. A scalar element of End(V )
is a morphism of the form λ Id, with λ ∈ K. An element of End(V ) which is not of this form
is called nonscalar.

Definition 4.2. Let V be a finite dimensional K-vector space, and let A ∈ End(V ). A is
semisimple if the following equivalent conditions are satisfied.

1. A is diagonalizable.

2. There is a basis of V consisting of eigenvectors of A.

3. The minimal polynomial of A has distinct roots.

4. K[A] ⊂ End(V ) is a semisimple K-algebra (every representation of K[A] decomposes
as a direct sum of irreducible representations).

A is nilpotent if there exists n ≥ 1 such that An = 0, or equivalently if all eigenvalues of A
are zero. A is unipotent if A− I is nilpotent (or equivalently, all eigenvalues are one).

Remark 4.3. Let V be a finite dimensional K-vector space, and let A ∈ End(V ). Suppose
U ⊂ V is an invariant subspace of A, and consider A|U ∈ End(U). If any of the properties
above (scalar, nonscalar, semisimple, nilpotent, unipotent) applies to A, then it also applies
to A|U .

Remark 4.4. If a linear map is both semisimple and nilpotent, then it is zero, since the
minimal polynomial of a nilpotent linear map is xn, and being semisimple forces no repeated
roots.

Lemma 4.5. Let V be a finite dimensional K-vector space, and let S ⊂ End(V ) be a set
of pairwise comuting endomorphisms. Then there is a basis of V such that the matrices
representing all elements of S are in upper triangular form, and so that all the semisimple
elements of S are diagonal.

A shorter but less precise version of the previous statement is: Any set of pairwise commuting
endomorphisms can be simultaneously put in upper triangular form.

Proof. (Note this proof is incomplete.)
Let S ⊂ End(V ) be a set of pairwise commuting endomorphisms. We proceed by induc-

tion on dimV . If dimV = 1, then End(V ) ∼= K, so the lemma is obvious. So we assume the
lemma holds for all vector spaces W with dimW < dimV .

Now we consider two cases. (1) S contains a nonscalar semisimple element A, and its
negation (2) S does not contain a nonscalar semisimple element.

(Case 1) For α ∈ K, let Vα be the eigenspace of A associated to the eigenvalue α.

Vα = {v ∈ V : Av = αv}
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Since A is semisimple, V is the direct sum of eigenspaces for A. (Since V is finite dimensional,
there are only finitely many α for which Vα is nonzero.)

V =
⊕
α∈K

Vα

Since A is nonscalar, dimVα < dimV for each α. Also note that for s ∈ S, and v ∈ Vα, we
have

As(v) = sA(v) = s(αv) = αs(v)

so s(v) ∈ Vα, so S(Vα) ⊂ Vα. Thus by induction, each Vα has a basis for which S is simul-
taneously upper triangular, with semisimple elements diagonal. Since every endomorphism
in S is a direct sum of endomorphisms of the Vα, the result also holds for V (since direct
sum of endomorphisms corresponds to block diagonal matrices, direct sums of upper tri-
anglar/diagonal matrix representations are respectively upper triangular/diagonal matrix
representations).

(Case 2) If every element of S is scalar, then we are done, since every S is simulaneously
diagonalized by any basis. So we may assume S contains a nonscalar element A which is
NOT semisimple. Since K is algebraically closed, A has an eigenvalue α.

Let Vα be the associated eigenspace. Since A is nonscalar, dimVα < dimV . As in case
(1), S(Vα) ⊂ Vα, so each s ∈ S induces an endomorphism of the quotient space V/Vα.

By induction hypotethesis, the result holds for Vα and for V/Vα, so there is a basis
{v1, . . . , vk} of Vα such that every element of S (acting on Vα) is upper triangular and the
semisimple elements are diagonal, and there is a basis {vk+1, . . . , vn} of V/Vα where S is
simultaneously upper triangular, and semisimple elements are diagonal.

By construction of these bases, for each s ∈ S, and each j such that k+1 ≤ j ≤ n, we have
s(vj) ∈ span {vk+1, . . . , vj}. Let vk+1, . . . , vn be lifts of vk+1, . . . , vn. Then {v1, . . . , vn} is a
basis of V , and s(vj) ∈ span {v1, . . . , vj}. So with respect to this basis, S is simultaneously
upper triangular.

It remains to show that semisimple elements of S are diagonal in this basis, which is to say,
v1, . . . , vn eigenvectors for any s ∈ S which is semisimple. By construction of v1, . . . , vk, they
are eigenvectors of s, since s being semisimple means it is diagonal in the basis {v1, . . . , vk}
for Vα. Also, for k + 1 ≤ j ≤ n, vj is an eigenvector of s, which is to say, s(vj) = λjvj for
some λj ∈ K, so s(vj) = λjvj + wj for some wj ∈ Vα.

How to show wj = 0? It’s not so easy to see that this is possible, even with modifying
the choice of lift vj for vj, since you have to do it for all s at the same time. I don’t know
how to finish the proof.

Corollary 4.6. Let V be a finite dimensional vector space over K, and let S ⊂ End(V ) be
a set of semisimple elements. Then there is a basis of V which simultaneously diagonalizes
all elements of S if and only if S pairwise commutes.

Proof. If everything can be simultaneously diagonalized, then clearly they all pairwise com-
mute. The converse is the content of the previous lemma.
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4.2 Jordan decomposition over algebraically closed fields

As before, K is a fixed algebraically closed field.

Definition 4.7. Let X ∈ End(V ), and let α ∈ K. The generalized eigenspace of X
associated to α is

V α = {v ∈ V : (X − α)rv = 0 for some r ≥ 0}

Lemma 4.8 (Generalized eigenspace decomposition). Let V be a finite dimensional vector
space over K, and let X ∈ End(V ), and let

f(T ) =
m∏
i=1

(T − αi)ni

be the minimal polynomial of X. Then

V =
m⊕
i=1

V αi

and V α = ker(X − αi)
ni and the minimal polynomial of X|V αi ∈ End(V αi) is gi(T ) =

(T − αi)ni.

Proof. We omit the proof that V = ⊕V αi , since it requires some build up of other lemmas.
We prove the other two statements. It is clear that ker(X−αi)ni ⊂ V αi . Since (X−αi)ni = 0,
the reverse inclusion is also clear. Regarding the minimal polynomial of X|V αi , it is clear
that gi(X|V αi ) = 0. If a lower power of (X − αi) was zero on all of V αi , then f(T ) would
not be the minimal polynomial of X, so gi is the minimal polynomial on V αi .

Proposition 4.9 (Jordan decomposition). Let V be a finite dimensional vector space over
K, and let X ∈ End(V ). Then there exist S,N ∈ End(V ) such that

1. X = S +N

2. S is semisimple

3. N is nilpotent

4. SN = NS

Furthermore, S,N are uniquely determined by these properties, and S,N can be written as
polynomials in K[X] with zero constant term.

For obvious reasons, the S,N of the proposition are called the semisimple part and nilpo-
tent part of X.

Proof. Let

f(T ) =
∏
α

(T − α)nα ∈ K[T ]
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be the minimal polynomial of X (each α is in K and the α are the eigenvalues of X, T is a
variable). Let

V α = {v ∈ V : (X − α)mv = 0 for some m ≥ 0}

be the generalized eigenspace of X associated to α. By Lemma 4.8, α is the only eigenvalue
of X|V α . Since V =

⊕
V α, we may define S ∈ End(V ) by defining it on each V α. Set

S|V α = α Id |V α

Now S is clearly semisimple, and SX = XS, since X(V α) ⊂ V α. Now set N = X − S.
Clearly N commutes with S and X as well. Note that N is nilpotent on each V α, and each
V α is an invariant subspace (of N), so N is nilpotent. Thus N,S exist and have the listed
properties. It remains to show that N,S are unique and can be written as polynomials in
X with zero constant term.

The polynomials (T −α)nα are pairwise coprime, so by the Chinese Remainder Theorem,
there exists a polynomial p(T ) ∈ K[T ] such that

p(T ) ≡ α mod (T − α)nα

p(T ) ≡ 0 mod T if V 0 = 0

By Lemma 4.8, on V α, (X − α)nα = 0, hence

p (X|V α) = α = S|V α

Since V decomposes into the V α, this shows p(X) = S. So S is a polynomial in X, and
p(X) = 0 mod X, so the constant term is zero. Since N = X − S = X − p(X), N is also a
polynomial in X with no constant term.

Finally, we prove uniqueness. Let X = S + N and X = S ′ + N ′ be two such decompo-
sitions. S, S ′, N,N ′ are polynomials in X, so everything commutes, so we may find a basis
of V which simultaneously makes them all upper triangular, and makes S, S ′ diagonal. We
have S − S ′ = N −N ′, and from the constructed basis it is clear that S − S ′ is semisimple
because it is diagonal, and N − N ′ is nilpotent, since N,N ′ are nilpotent (use binomial
theorem or something), so S − S ′ = N −N ′ is both semisimple and nilpotent, so it is zero.
Hence S = S ′ and N = N ′, proving uniqueness.

Proposition 4.10. Let V be a finite dimensional K-vector space and let X ∈ End(V ), and
let X = S +N be the Jordan decomposition. If X is invertible (e.g. if X ∈ Aut(V )) then S
is also invertible, and S−1 is a polynomial in X.

Proof. Let

f(T ) =
∏
α

(T − α)nα

be the minimal polynomial of X, and let p(T ) ∈ K[T ] be the polynomial such that p(X) = S.
From the construction of p(T ) in the proof of the previous proposition, we had

p(T ) ≡ α mod (T − α)nα
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Also, note that
f(T ) ≡ 0 mod (T − α)nα

so p(T ) and f(T ) are coprime. Since K[T ] is a Euclidean domain, there exist q(T ), g(T ) ∈
K[T ] such that

1 = pq + fg = p(T )q(T ) + f(T )g(T )

Plugging in X, the fg term vanishes because f(X) = 0, so

1 = p(X)q(X) = Sq(X)

Hence S is invertible and S−1 = q(X) is a polynomial in X.

Proposition 4.11 (Multiplicative Jordan decomposition). Let V be a finite dimensional
K-vector space, and let X ∈ Aut(V ). Then there exist S, U ∈ Aut(V ) such that

1. X = SU

2. S is semisimple

3. U is unipotent

4. SU = US

Furthremore, S, U are uniquely determined by these properties, and S, U can be written as
polynomials in K[X], with S having no constant term.

A slicker way to phrase the proposition is this: any automorphism of a finite dimesional
vector space can be uniquely written as a product of a semisimple element and a nilpotent
element that commute with each other.

For obvious reasons, the S of the proposition is called the semisimple part of X, and
the U is called the unipotent part of X.

Proof. Let X ∈ Aut(V ). We can write X uniquely as X = S +N with S semisimple and N
nilpotent. By Proposition 4.10, S is invertible, so we can write X as

X = S +N = S(Id +S−1N)

Since N is nilpotent and S−1, N commute, S−1N is nilpotent, so U = Id +S−1N is unipotent.
It is clear that SU = US, and by Proposition 4.10, S−1 is a polynomial in X, so U is as
well. It just remains to show uniqueness.

Suppose X = SU = S ′U ′ with S, S ′ semisimple and U,U ′ unipotent. Let N = SU − Id
and N ′ = S ′U ′ − Id, so U = Id +S−1N . Since U is unipotent, U − Id = S−1N is nilpotent.
Since S−1 is invertible, N must be nilpotent. Similarly, N ′ is nilpotent. Now observe

X = S +N = S + SU − Id = S − Id +S ′U ′ = S − Id +N ′ + Id = S ′ +N ′

By uniqueness of the (additive) Jordan decomposition, S = S ′, N = N ′, so U = U ′.
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4.3 Jordan decomposition over perfect fields

Algebraic closure of K is not entirely necessary for Jordan decomposition. A weaker but
sufficient condition for the unique decomposition X = S + N is that K is a perfect field,
which means that every algebraic extension of K is separable. In this section, we show that
Jordan decomposition still works in the perfect case..

For this section, assume K is a non-algebraically closed field, and let K denote the
algebraic closure. Let V be a finite dimensional K-vector space. The first issue we would like
to address is that our previous equivalent definitions of semisimplicity for an endomorphism
X ∈ EndK(V ) are no longer equivalent. Before we can do that, we need some other things.

Definition 4.12. Let V be a finite dimensional K-vector space. Associated to V is the
K-vector space

VK = V ⊗K K
The K action on VK is done in the expected way: for λ, α ∈ K, v ∈ V , λ acts on the simple
tensor v ⊗ α via

K × VK → VK λ · (v ⊗ α) = v ⊗ (λα)

Since the simple tensors give a basis of VK , extending this by linearity gives a K action.

Definition 4.13. Similar to the above, if φ : V → W is a morphism of K-vector spaces (a
K-linear map), then there is an associated K-linear map

φK = φ⊗ Id : VK → WK v ⊗ α 7→ φ(v)⊗ α

As before, this only defines φK for simple tensors, but we extend by linearity. In particular,
if X ∈ EndK(V ), then the associated map XK lies in EndK(VK). Even better, this is an
embedding

EndK(V )→ EndK(VK) φ 7→ φK

Definition 4.14. Let φ ∈ EndK(VK). If there exists φ ∈ EndK(V ) such that φ = φK , then
we say φ comes from φ, or we may just say φ comes from V , or that φ comes from a
K-endomorphism of V .

Remark 4.15. Much of the difficulty in extending Jordan decompositions for non-algebraically
closed fields lies in the question of determining when a given K-linear endomorphism of VK
comes from a K-linear endomorphism of V . In general, something in EndK(VK) does not
usually come from V , but when things work out for Jordan decompositions, it is because we
were able to show something came from V .

Definition 4.16. X ∈ EndK(V ) is semisimple if XK is semisimple. Note that this is
equivalent to the minimal polynomial of X being square-free, or that every X-invariant
subspace of V has a complementary X-invariant subspace.

Even though the full power of Jordan decomposition does not hold in the case of a general
non-algebraically closed field, the above suggests a way forward. Since K is algebraically
closed, XK has a Jordan decomposition

XK = S +N

The question is then, do SK and NK come from endomorphisms S,N ∈ EndK(V )? There is
no reason to think so.
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Definition 4.17. Let V,K be as above, and suppose K is perfect, so that K = Ksep, which
means that K/K is a Galois extension. Let G = Gal(K/K). For σ ∈ G, and Y ∈ EndK(VK),
define

Y
σ ∈ EndK(VK)

as the composition

VK VK VK VK
Id⊗σ−1 Y Id⊗σ

If e is the identity of G, it is clear that Y
e

= Y , and it also clear that for σ, τ ∈ G,(
Y
σ)τ

= Y
(τσ)

Thus we have a group action

G× EndK(VK)→ EndK(VK) (σ, Y ) 7→ Y
σ

Note that in this action, each σ ∈ G acts K-linearly on EndK(VK).

Remark 4.18. Let σ ∈ G = Gal(K/K) as in the previous definition. If Y ∈ EndK(VK)
is semisimple, then Y

σ
is also semisimple, and the analogous statements for nilpotent and

unipotent hold as well.

Remark 4.19. Let V,K,G be as in the previous definition. If X ∈ EndK(V ), then XK is
fixed under the action of G. That is, for σ ∈ G,

Xσ
K

= XK

Why? Remember that Xσ
K

is defined as the composition

Xσ
K

: V ⊗K K V ⊗K K V ⊗K K V ⊗K K
Id⊗σ−1 XK=X⊗Id Id⊗σ

The middle part XK acts only on V , so the actions of σ−1 and σ cancel out.

The next goal is to obtain a sort of converse to this remark. That is, we want to say that
anything satisfying X

σ
= X for every σ ∈ G comes from an endomorphism of V . However,

this statement is not actually true, so we need to refine it by adding additional hypotheses
in the form of restrictions on X. First, we give a long and concrete example using all of
these definitions.

Example 4.20. Let K = R (which is perfect), K = C, V = R2, VK = R2 ⊗C C ∼= C2, G =

Gal(C/R) ∼= Z/2Z. Let e1 =

(
1
0

)
, e2 =

(
0
1

)
be the canonical basis of V = R2, and fix the

basis e1⊗1+e2⊗i, e1⊗1−e2⊗i for VK = V ⊗CC. Fix θ ∈ R, and let S ∈ EndK(VK) ∼= GL2(C)
be the automorphism represented by the matrix(

eiθ 0
0 e−iθ

)
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with respect to the aforementioned basis of VK . That is,

S(e1 ⊗ 1 + e2 ⊗ i) = eiθ(e1 ⊗ 1 + e2 ⊗ i) = e1 ⊗ eiθ + e2 ⊗ ieiθ

S(e1 ⊗ 1− e2 ⊗ i) = e−iθ(e1 ⊗ 1− e2 ⊗ i) = e1 ⊗ e−iθ − e2 ⊗ ie−iθ

Note that S is semisimple, since it is diagonal in this basis. The eigenvalues are eiθ, e−iθ,
which are notably not in R, unless θ is an integer multiple of π.

Now consider the Galois action of G on EndK(Vk). There is only one nontrivial element,
which is complex conjugation, and we denote by σ. We can compute S

σ
acting on our basis

vectors explicitly as follows.

S
σ
(e1 ⊗ 1 + e2 ⊗ i) = (1⊗ σ)S(e1 ⊗ 1− e2 ⊗ i)

= σ
(
e−iθ(e1 ⊗ 1− e2 ⊗ i)

)
= eiθ(e1 ⊗ 1 + e2 ⊗ 1)

= S(e1 ⊗ 1 + e2 ⊗ i)
S
σ
(e1 ⊗ 1− e2 ⊗ i) = (1⊗ σ)S(e1 ⊗ 1 + e2 ⊗ i)

= (1⊗ σ)(eiθ(e1 ⊗ 1 + e2 ⊗ i)
= e−iθ(e1 ⊗ 1− e2 ⊗ i)
= S(e1 ⊗ 1− e2 ⊗ i)

Thus S
σ

= S. As we mentioned before, we want this to somehow tell us that S comes from
V , perhaps with additional hypotheses. However, in the case of this example, we can work
out that S comes from V more directly, which we will do in a moment.

Setting this aside, we now calculate the matrix of S with respect to the more usual basis
e1⊗1, e2⊗1 of VK as follows. Adding the two previous equations for S acting on the original
basis, we obtain

2S(e1 ⊗ 1) = e1 ⊗ eiθ + e2 ⊗ ieiθ + e1 ⊗ e−iθ − e2 ⊗ ie−iθ

= e1 ⊗
(
eiθ + e−iθ

)
+ e2 ⊗

(
ieiθ − ie−iθ

)
= e1 ⊗ (2 cos θ)− e2 ⊗ (2 sin θ)

S(e1 ⊗ 1) = (cos θ)(e1 ⊗ 1)− (sin θ)(e2 ⊗ 1)

Similarly, subtracting the equations gives

2S(e2 ⊗ i) = e1 ⊗ eiθ + e2 ⊗ ieiθ − e1 ⊗ e−iθ + e2 ⊗ ie−iθ

= e1 ⊗
(
eiθ − e−iθ

)
+ e2 ⊗

(
ieiθ + ie−iθ

)
= e1 ⊗ (2i sin(θ)) + e2 ⊗ (2i cos(θ))

S(e2 ⊗ 1) = (sin θ)(e1 ⊗ 1) + (cos θ)(e2 ⊗ 1)

Thus with respect to the basis e1 ⊗ 1, e2 ⊗ 1, the matrix of S is(
cos θ − sin θ
sin θ cos θ

)
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Note that this is the usual matrix which represents rotation by the angle θ when acting on
v ∈ R2. It is now clear that S comes from this endomorphism of V = R2, that is, the linear

map represented by

(
cos θ − sin θ
sin θ cos θ

)
with respect to the standard basis e1, e2 for R2. This

concludes the example.

Now after just one more short definition, we can get to our key statement for recognizing
when something in EndK(VK) comes from EndK(V ).

Definition 4.21. Let G be a group acting on a set A. The set of fixed points is AG =
{a ∈ A : σa = a,∀σ ∈ G}.

Lemma 4.22. Let L/K be a finite Galois extension, and set G = Gal(L/K). Consider the
group action

G×Mn(L)→Mn(L) (σ,A) 7→ Aσ = σ ◦ A ◦ σ−1

Then Mn(L)G = Mn(K). That is, for A ∈Mn(L), A ∈Mn(K) if and only if A = Aσ for all
σ ∈ G.

Proof. It is clear that if A ∈Mn(K), then Aσ = A, so Mn(K) ⊂Mn(L)G. For the converse,
consider v ∈ Ln, then

Aσ(v) = σ(A(σ−1(v))) = σ(A)σ(σ−1(v)) = σ(A)v

where σ(A) refers to applying σ to each entry of A. Thus Aσ = σ(A). So if Aσ = A, then
all entries of A are fixed by G, and A ∈ Mn(K). Hence Mn(L)G ⊂ Mn(K), so they are
equal.

Lemma 4.23. Let V,K,G be as above, in particular K is perfect. If T ∈ EndK(VK)G, then
there exists T ∈ EndK(V ) such that T = TK. That is, if T

σ
= T for every σ ∈ G, then T

comes from a K-endomorphism of V .

Proof. This is basically just a “coordinate-free” version of the previous lemma. Roughly
speaking, all we have to do is fix a basis of V and this will follow, but we include the details.
Fix a K-basis β = {v1, . . . , vn} of V , which induces a K-basis β = {v1 ⊗ 1, . . . , vn ⊗ 1} of
VK . This gives isomorphisms

V n ∼= Kn vi 7→ ei

EndK(V ) ∼= Mn(K) T 7→ [T ]β

V n
K
∼= K

n
vi ⊗ 1 7→ ei

EndK(VK) ∼= Mn

(
K
)

T 7→
[
T
]
β

where ei is the column vector with 1 in the ith place and zeroes elsewhere, and [T ]β is the
matrix of T in the basis β, and

[
T
]
β

is the matrix of T in the basis β. The notation is chosen

so that
[Tvi]β = [T ]β[vi]β = [T ]βei
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Also note that under the isomorphism EndK(VK) ∼= Mn(K), the K-subspaces EndK(V ) and
Mn(K) correspond, via the isomorphism EndK(V ) ∼= Mn(K). We can depict this with the
following commutative diagram.

EndK(V ) Mn(K)

EndK(VK) Mn(K)

∼=

T 7→TK
∼=

Our isomorphisms are respectively isomorphisms of K-algebras and K-algebras, but we claim
that the second one is also an isomorphism of G-modules. Let T ∈ EndK(VK) and σ ∈ G.
Then [

T
σ]
β

(ei) =
[
(1⊗ σ)T (1⊗ σ−1)

]
β

(ei)

=
[
(1⊗ σ)T (1⊗ σ−1)(vi ⊗ 1)

]
β

=
[
(1⊗ σ)T (vi ⊗ 1)

]
β

= σ
[
T (vi ⊗ 1)

]
β

= σ
[
T
]
β

(ei)

= σ
[
T
]
β
σ−1(ei)

=
[
T
]σ
β

(ei)

Since they agree on basis, this shows
[
T
σ]
β

=
[
T
]σ
β
, hence it is a morphism of G-modules

as claimed. Now let T ∈ EndK(VK)G. Since
[
T
]
β

has only fintiely many entries, there is a

finite Galois extension L/K such that
[
T
]
β
∈Mn(L). Let σ ∈ G, so we have T = T

σ
, so[

T
]
β

=
[
T
σ]
β

=
[
T
]σ
β

Since σ ∈ G was arbitrary, it also holds for σ|L ∈ Gal(L/K). Then by the previous lemma,[
T
]
β
∈ Mn(K). Then since Mn(K) corresponds to the image of EndK(V ) in EndK(VK),

T = TK for some T ∈ EndK(V ).

Proposition 4.24 (Jordan decomposition for perfect fields). Let V,K be as above. Let
X ∈ EndK(V ) and

XK = S +N

be the Jordan decomposition of XK. If K is perfect, then there are unique S,N ∈ EndK(V )
satisfying

S = SK N = NK X = S +N

with S is semisimple and N is nilpotent, and SN = NS. Also, S,N are polynomials in X
with no constant term.
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Proof. As K is perfect, K/K is Galois. Let G = Gal(K/K) and consider the K-linear
G-action on EndK(VK) defined previously. Let σ ∈ G. Applying the action to XK = S +N ,
and using Remark 4.19, we obtain

Xσ
K

= S
σ

+N
σ

= Xσ
K

= XK = S +N

By Remark 4.18, S
σ

is semisimple and N
σ

is nilpotent. Thus by uniqueness of Jordan
decomposition, S = S

σ
and N = N

σ
. Since σ ∈ G was arbitrary, by Lemma 4.23, S,N come

from V , which is to say, there exist S,N ∈ EndK(V ) such that S = SK and NK = N .
It is immediate that S is semisimple, and that N is nilpotent, and that X = S+N . The

commutativity SN = NS follows from SKNK = NKSK , and uniqueness of S,N follow from
uniqueness of S,N . The statement about polynomials in X follows from the fact that S,N
are polynomials in XK .

4.4 Failure of Jordan decomposition over imperfect fields

In this section we give an example of particular matrix over an imperfect field which Jordan
decomposition fails. Let Fq be the field with q elements. The canonical example of an
imperfect field is Fq(T ), where T is a transcendant variable. For concreteness, we will
consider F2(T ), though in principal this example could be carried out more generally for
Fq(T ).

Let K = F2(T ) and let V be a two dimensional K-vector space, which we identify with

column vectors. Let e1 =

(
1
0

)
, e2 =

(
0
1

)
be the canonical basis for V . Given any basis of V ,

we get an isomorphism (of K-algebras) between GL2(K) and EndK(V ). Let X ∈ EndK(V )
be the endomorphism corresponding to the following matrix, with respect to the canonical
basis.

X =

(
0 1
T 0

)
∈ EndK(V )

As in the previous section, we may consider X as an endomorphism of VK = V ⊗K K, by
considering XK = X ⊗ Id ∈ EndK(VK). With respect to the canonical basis of VK (which
is two dimensional over K), XK has the same matrix as X. We wish to explicitly find the
Jordan decomposition of XK . One way to do this is to find a basis of VK in which XK is
upper triangular.

We omit the details of finding this basis at the moment, and just present it as given.

Consider the basis
{
e1 +

√
Te2, e2

}
of VK . Changing to this basis corresponds to conjugating

by the matrix A =

(
1 0√
T 1

)
, so we conjugate X by this matrix. Note that A = A−1, keeping

in mind that 2 = 0.

AXA−1 =

(
1 0√
T 1

)(
0 1
T 0

)(
1 0√
T 1

)
=

(
0 1

T
√
T

)(
1 0√
T 1

)
=

(√
T 1

2T
√
T

)
=

(√
T 1

0
√
T

)
So in the basis

{
e1 +

√
Te2, e2

}
for VK , XK is represented by the matrix(√

T 1

0
√
T

)
=

(√
T 0

0
√
T

)
+

(
0 1
0 0

)
= S +N
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The above gives a Jordan decomposition for XK . Now the question is, does this decomposi-
tion descend to a decomposition of X? That is, are there S,N ∈ EndK(V ) such that S = SK
and N = NK? For N this is fine, N clearly comes from the same matrix over K. However,
S involves the entry

√
T , which does not lie in K. This strongly suggests that S does not

come from V .
Consider the set V ′ = {v ⊗ 1 : v ∈ V } ⊂ VK . Any endomorphism coming from EndK(V )

keeps V ′ invariant. That is, if Y ∈ EndK(V ), then Y restricts to a map V ′ → V ′. Thus,
because S does not keep V ′ invariant, S does not come from V . Hence the Jordan decom-
position for XK does not descend to a Jordan decomposition over K.

4.5 Jordan decomposition in infinite dimensions

We return to assuming our field K to be algebraically closed. In the previous sections, we
have only worked with vector spaces of finite dimension over K. We have successfully worked
out the details of Jordan decomposition in this case.

However, even when working with finite dimensional algebraic groups, the associated co-
ordinate K-algebra is almost never finite dimensional. It is usually a quotient or localization
of a polynomial ring K[x1, . . . , xn], and even the polynomial ring in one variable K[x], while
being finitely generated as an algebra, is infinite dimensional as a K-vector space.

All this to say, it will occasionally be useful/necessary for us to have Jordan decomposi-
tions in this context. To my knowledge, Jordan decompositions do not work in general for
endomorphisms of infinite dimensional vector spaces. But as we show in this section, they
do work out for “locally finite” endomorphisms.
Throughout this section, let V be a vector space over K, not necessarily finite dimensional.
(For all of these results, if V is finite dimensional then we already know the result, so for the
purposes of reading you may as well assume V is infinite dimensional over K.)

Definition 4.25. An endomorphism T ∈ End(V ) is locally finite if V can be written as
V =

∑
Vλ, where each Vλ is a finite dimensional T -invariant subspace.

Remark 4.26. Possibly utilizing Zorn’s lemma, being locally finite is equivalent to being
able to write V as a direct sum of finite dimensional invariant subspaces, V =

⊕
λ Vλ.

Lemma 4.27. T ∈ End(V ) is locally finite if and only if each v ∈ V is contained in a finite
dimensional T -invariant subspace.

Proof. If T is locally finite, then V =
∑
Vλ, and each v ∈ V is contained in some finite

sub-sum of the Vλ. Conversely, if each v ∈ V is contained in a finite dimensional T -invariant
subspace, then T is the sum of those subspaces.

Remember that if V is infinite dimensional, then T ∈ End(V ) may be injective but not sur-
jective (if V is finite dimensional, then injectivity implies surjectivity by dimension counting).
Despite this, the next lemma shows that for locally finite endomorphisms, this property does
carry over from the finite case.

Lemma 4.28. Let T ∈ End(V ) be locally finite. Then the following are equivalent.

1. T is injective.

37



2. T is invertible.

3. All eigenvalues of T are nonzero.

Proof. The equivalence (2) ⇐⇒ (3) is clear, as is (1) =⇒ (2). All that remains is
(2) =⇒ (1). Let v ∈ V . Then v is contained in a T -invariant subspace W of finite
dimension, so T : W → W is a linear map, and T |W is injective. Thus T |W is surjective, so
v ∈ imT . Hence T : V → V is surjective.

Remark 4.29. From the previous lemma, it is clear that if T is locally finite and invertible,
then T−1 is also locally finite.

Proposition 4.30. Let T ∈ End(V ) be locally finite. Then there exist S,N ∈ End(V ) such
that

1. T = S +N

2. SN = NS

3. If W ⊂ V is a finite dimensional T -invariant subspace, then S,N also keep W invari-
ant, and T |W = S|W +N |W is the Jordan decomposition of T |W .

4. S,N are locally finite.

5. S is semisimple (meaning that V has a basis of eigenvectors for S).

6. N is locally nilpotent (meaning N is nilpotent on each finite dimensional invariant
subspace).

Furthermore, S,N are uniquely determined by these properties.

Proof. Let {Vλ} be the set of all finite dimensional T -invariant subspaces of V . Because T
is locally finite, V =

∑
Vλ. For each λ, we have a Jordan decomposition

Tλ = T |Vλ = Sλ +Nλ

Define S,N ∈ End(V ) by S|Vλ = Sλ and N |Vλ = Nλ. To verify that this is well defined, we
need to check that for two T -invariant subspaces Vλ, Vµ, the definitions of S,N agree on the
intersection W = Vλ ∩ Vµ. Now observe that

Sλ|W +Nλ|W = Tλ|W = Tµ|W = Sµ|W +Nµ|W

By definition, these are both Jordan decompositions for T |W , so by uniqueness, Sλ|W = Sµ|W
and Nλ|W = Nµ|W . Thus the definition of S,N makes sense. It is now clear that properties
(1) and (2) hold “locally,” that is, on every finite dimensional T -invariant subspace, and such
subspaces span V , so they hold everywhere.

Property (4) is clear from the construction of S and N . Property (5) follows because S
is semisimple on each Vλ, meaning each Vλ has a basis of eigenvectors of S. So there is a
spanning set for V of eigenvectors for S, which we can reduce if necessary to obtain a basis.
Property (6) is immediate.
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Corollary 4.31. Let T ∈ End(V ) be a locally finite automorphism. Then there exist K-
linear automorphisms S, U ∈ Aut(V ) such that

1. T = SU

2. SU = US

3. S is semisimple and U is unipotent.

4. For each finite dimensional subspace W which is T -invariant, W is also S− and U-
invariant, and T |W = S|WU |W is the Jordan decomposition of T |W .

Furthermore, S, U are uniquely determined by theses properties.

Proof. Basically the same construction as the previous proof. Define S, U locally, and make
sure that it works on intersections.

Remark 4.32. In the decomposition T = SU , U has only eigenvalues of 1, so the eigenvalues
(with multiplicities) for T and S are the same.

5 Jordan decomposition for all algebraic groups

Finally after our long foray into relatively pure linear algebra, we return to algebraic groups
to apply the tool of Jordan decomposition that we have developed. The goal is to develop
a similar type of decomposition for a general algebraic group. It is not terribly surpris-
ing that this works, since every algebraic group embeds into GL(V ), and we have Jordan
decomposition in GL(V ).

The naive approach is the following. Embed φ : G ↪→ GL(V ), take x ∈ G, and look at
the Jordan decomposition of φ(x) in GL(V ), φ(x) = SU . Then somehow use this to obtain
decomposition for x in G. The problems with this are twofold.

1. We have no reason to believe that S, U lie in the image of G under φ.

2. The embedding G ↪→ GL(V ) is far from unique. Suppose that S, U lie in the image
of G, say S = φ(s), U = φ(u), and x = su is our proposed decomposition. If we have
another embedding ψ : G ↪→ GL(W ), how do we know that ψ(x) = ψ(s)ψ(u) is the
Jordan decomposition of ψ(x)? If it is not, then our decomposition is not intrinsinc to
G, but depends on the embedding, which is undesirable.

There are probably ways to handle these problems somewhat directly. However, we take a
different approach to decomposing x ∈ G into a product x = su where s, u are “semisimple”
and “unipotent,” whatever that means for an element of an algebraic group. Our approach
will have the advantage that it will be clear that it is intrinsic to G, and that under any
embedding G ↪→ GL(V ), the image of x = su is the Jordan decomposition in GL(V ).
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5.1 Semisimple and unipotent elements

Let (G,A) be an affine algebraic group. We may also refer to A as K[G], the coordinate ring
of G. Recall that for x ∈ G, we have morphisms

ρx : G→ G y 7→ yx

λx : G→ G y 7→ xy

which are isomorphisms of varieties, though not group homomorphisms. They induce K-
algebra automorphisms

ρ∗x : A→ A ρ∗x(f)(y) = f(yx)

λ∗x : A→ A λ∗x(f)(y) = f(xy)

These maps are the motivation for our study of Jordan decomposition for infinite dimensional
vector spaces. Recall that A is finitely generated as a K-algebra, but typically infinite
dimensional as a K-vector space. However, we will see that ρ∗x, λ

∗
x are locally finite. Recall

that for each f ∈ A, the subspace

Wf = 〈ρ∗x(f) : x ∈ G〉K

is finite dimensional (over K). Because of the relation

ρ∗xρ
∗
y = ρ∗xy

we have a group homomorphism

G→ GL(A) x 7→ ρ∗x

Also, the relation makes it clear that Wf is ρ∗x-invariant. In parallel,

〈λ∗x(f) : x ∈ G〉K

is finite dimensional and λ∗x-invariant. Summarizing, ρ∗x and λ∗x (for any given x ∈ G) are
locally finite automorphisms of A.

Definition 5.1. Let G be an affine algebraic group. An element s ∈ G is semisimple if
the automorphism ρ∗x of A is semisimple. Similarly, u ∈ G is unipotent if ρ∗u ∈ Aut(A) is
unipotent.

Remark 5.2. We have apparently given preferential treatment to ρ∗x over λ∗x in the previous
definition. The obvious reason for this is that

G→ GL(A) x 7→ ρ∗x

is a group homomoprhism, while

G→ GL(A) x 7→ λ∗x

is an “anti-homomorphism,” due to the relation

λ∗xλ
∗
y = λ∗yx
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Remark 5.3. An element s ∈ G is semisimple if and only if s−1 is also semisimple because

ρ∗x−1 = (ρ∗s)
−1

Similarly, u ∈ G is unipotent if and only if u−1 is unipotent.

Remark 5.4. To answer the unstated question of Remark 5.2, the definitions for semisimple
and unipotent group elements do not actually depend any more on ρ than λ. This is because
of the relation

λx = i ◦ ρx−1 ◦ i

which induces the relation
λ∗x = i∗ ◦ ρ∗x−1 ◦ i∗

Hence ρ∗x is semisimple (respectively unipotent) if and only if ρ∗x−1 is semisimple (respectively
unipotent) if and only if λ∗x is semisimple (respectively unipotent). Thus the definition could
have used λ∗x instead and would be equivalent.

5.2 Main result

We start this section by stating the main result, which reads exactly the statement of Jordan
decomposition for automorphisms of a vector space.

Proposition 5.5 (Jordan decomposition for algebraic groups). Let G be an affine algebraic
group and x ∈ G. Then there exist xs, xu ∈ G such that

1. x = xsxu = xuxs

2. xs is semisimple

3. xu is unipotent

4. xs, xu are uniquely determined by the previous properties.

Definition 5.6. For obvious reaons, xs and xu of the previous proposition are respectively
called the semisimple part and unipotent part of x, and x = xsxu is called the Jordan
decomposition of x.

Before the proof of the main proposition, we need multiple lemmas. Recall that we assume
K is an algebraically closed field.

Lemma 5.7. Let A be a K-algebra (not necessarily commutative or even associative). Let
σ ∈ EndK(A), α, β ∈ K, and f, g ∈ A. Then

(σ − αβ)n(fg) =
n∑
i=0

(
n

i

)
(σ − α)i(αn−if)σi(σ − β)n−i(g)

Proof. Then n = 1 case can be checked directly. Then do a notation-heavy induction step
with some tricks and Pascal’s identity. (See hand written notes for a weak attempt to write
down most of the details.)
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Lemma 5.8. Let A be a K-algebra (not necessarily commutative or even associative). Let
σ be a locally finite K-algebra automorphism, and let σ = su be the Jordan decomposition.
Then s, u are K-algebra automorphisms of A.

Proof. We already know that s, u are invertible, so if s is a K-algebra homomorphism, then
u = s−1σ is as well. Hence it suffices to prove that s is a K-algebra homomorphism.

Since σ is locally finite, we can write A as a direct sum of generalized eigenspaces, which
are finite dimensional.

A =
⊕
α∈K

Aα

where
Aα = {f ∈ A|(σ − α)nf = 0 for some n ≥ 1}

is the generalized eigenspace of σ corresponding to α. Note that S acts on Aα as multipli-
cation by α. We claim that for α, β ∈ K, AαAβ ⊂ Aαβ. If we prove this claim, then for
f ∈ Aα, g ∈ Aβ,

s(fg) = αβ(fg) = (αf)(βg) = s(f)S(g)

Then by linearity, s is a K-algebra homomorphism. So we have reduced the lemma to
showing AαAβ ⊂ Aαβ. Using the formula from the previous lemma, if f ∈ Aα, g ∈ Aβ, then
all the terms on the right hand side of the following equation are zero for n large enough.

(σ − αβ)n(fg) =
n∑
i=0

(
n

i

)
(σ − α)i(αn−if)σi(σ − β)n−i(g)

Hence fg ∈ Aαβ, which shows AαAβ ⊂ Aαβ as needed.

Lemma 5.9. Let (G,A) be an algebraic group. If σ is a K-algebra endomorphism of A such
that for every t ∈ G,

σλ∗t = λ∗tσ

then σ = ρ∗w for some unique w ∈ G.

Proof. Let σ be such an endomorphism. Let t ∈ G and let ev1 : A → K be the evaluation
map at the identity of G. Because G is an affine variety, the K-algebra homomorphism
ev1 σ : A→ K is evaluation at some w ∈ G. Also note that ev1 λ

∗
t = evt.

evw λ
∗
t = ev1 σλ

∗
t = ev1 λ

∗
tσ = evt σ

On the other hand,
evw λ

∗
t = evtw = evt ρ

∗
w

Thus
evt σ = evt ρ

∗
w

Since t is arbitrary, this shows σ = ρ∗w. It just remains to show that w is unique. If ρ∗w = ρ∗w′ ,
then for f ∈ A,

f(w) = ev1 ρ
∗
w(f) = ev1 ρ

∗
w′(f) = f(w′)

Since f was arbitrary, every point of G is separated by some homomorphism in A, this
implies w = w′.
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Now we can prove the main result.

Proposition 5.10 (Jordan decomposition for algebraic groups). Let G be an affine algebraic
group and x ∈ G. Then there exist xs, xu ∈ G such that

1. x = xsxu = xuxs

2. xs is semisimple

3. xu is unipotent

4. xs, xu are uniquely determined by the previous properties.

Proof. Let x ∈ G, and let ρ∗x = SU be the Jordan decomposition of ρ∗x as a K-linear
automorphism of A. By Lemma 5.8, S, U are K-algebra automorphisms. Since ρ∗x commutes
with λ∗t for every t ∈ G, so do S and U . Hence by Lemma 5.9, there exist xs, xu ∈ G such
that S = ρ∗xs , U = ρ∗xu . Thus

ρ∗x = ρ∗xsρ
∗
xu

By the same uniqueness argument as at the end of Lemma 5.9, x = xsxu. The remaining
properties are clear.

Remark 5.11. For x ∈ G,
λ∗x = λ∗xsλ

∗
xu

is the Jordan decomposition of λ∗x (because xs, xu commute with each other, the anti-
homomorphism property of λ∗ becomes just a homomorphism property).

Definition 5.12. For a subset S of a group G, the centralizer of S in G is

ZG(S) = {x ∈ G : xs = sx,∀s ∈ S}

Remark 5.13. For g ∈ G, ρ∗g commutes with ρ∗x if and only if it commutes with ρ∗xs and
ρ∗xu , since locally ρ∗xs , ρ

∗
xu are polynomials in ρ∗x. Hence

ZG(x) = ZG(xs) ∩ ZG(xu)

5.3 Jordan decompositions and morphisms

Definition 5.14. A representation of a group G is a group homomorphism G→ GL(V )
for some K-vector space V . Language around representations can be confusing - sometimes
the homomorphism G→ GL(V ) is called the representation, and sometimes V is called the
representation.

Remark 5.15. Let (G,A) be an algebraic group. We have previously discussed the group
homomorphism

G→ GL(A) x 7→ ρ∗x

Using the previous definition, we can say that this is a representation of G. Given n ≥ 1,
we also have the representation

G→ GL(An) ∼= GL(A)× · · · ×GL(A) x 7→ (ρ∗x, . . . , ρ
∗
x)

We call this a representation of G by right translations.
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Definition 5.16. If ρ : G → GL(V ) is a representation, then the dual space V ∗ is also a
representation of G, called the dual representation, via

ρ∗ : G→ GL(V ∗) g 7→ ρ∗(g) = ρ(g−1)T

where the superscript T denotes transpose. More concretely, we can describe it by

ρ∗(g) = ρ(g−1)T : V ∗ → V ∗ ρ(g−1)T (v∗) = v∗ ◦ ρ(g−1)

Lemma 5.17. Let (G,A) be an algebraic group. Every representation of G is isomorphic to
a representation of G on a subspace of An via right translations. That is, if ρ : G→ GL(V ) is
a representation, then there is an embedding V ↪→ An which is a morphism of representations
of G. Being a morphism of representations means that the following square commutes for
every x ∈ G.

V An

V An

ρ(x) (ρ∗x,··· ,ρ∗x)

Proof. Let ρ : G → GL(V ) be a representation. Let v1, . . . , vn be a basis of V , and let
v∗1, . . . , v

∗
n be the dual basis of V ∗. So for any v ∈ V , the element v∗ ∈ V ∗ is defined by

V → V ∗ v =
∑
i

αivi 7→ v∗ =
∑
i

αiv
∗
i

Recall that the matrix coefficients mw,v∗ for w ∈ V, v∗ ∈ V ∗, given by

mw,v∗ : G→ K mw,v∗(x) = v∗(ρ(x)(w))

generate A as a K-algebra. Define

φ : V → An v 7→
(
mv,v∗1

, . . . ,mv,v∗n

)
We will show that φ is the required embedding of G-representations. It is clear that φ is
K-linear, since mw,v∗ is linear in v. First, we show that φ is injective. If φ(v) = 0, then

mv,v∗i
= 0 =⇒ mv,v∗i

(x) = v∗i (ρ(x)(v)) = 0

for all i = 1, . . . , n and all x ∈ G. Choosing x to be the identity in G, this gives v∗i (v) = 0
for all i. Since v1, . . . , vn is a basis of V , v = 0. Thus kerφ is trivial, so φ is injective.

Now we verify that φ is a morphism of representations, which means we need to show that
φ(g · v) = g ·φ(v) for all g ∈ G. Keep in mind that φ(g · v) = φ(ρ(g)v), and g ·φ(v) = ρ∗gφ(v).

φ(g · v) = φ(ρ(g)v) =
(
mρ(g)v,v∗1 ,...,mρ(g)vv

∗
n

)
g · φ(v) = g ·

(
mv,v∗1

, . . . ,mv,v∗n

)
=
(
ρ∗gmv,v∗1

, . . . , ρ∗gmv,v∗n

)
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So it comes down to verifying that mρ(g)v,v∗i
= ρ∗gmv,v∗i

for all i = 1, . . . , n and all g ∈ G and
all v ∈ V . By linearity in v, it suffices to show this when v = vj is a basis vector. To show
mρ(g)v,v∗i

= ρ∗gmvj ,v∗i
as functions, we compare their evaluations at an arbitrary x ∈ G.

mρ(g)v,v∗i
(x) = v∗i (ρ(x)ρ(g)v) = v∗i (ρ(xg)v)

ρ∗gmv,v∗i
(x) = mv,v∗i

(xg) = v∗i (ρ(xg)v)

Thus mρ(g)v,v∗i
= ρ∗gmv,v∗i

, we get φ(g · v) = g · φ(v), hence φ is an embedding of G-
representations.

Lemma 5.18. Let G be an algebraic group and let ρ : G → GL(V ) be a morphism of
algebraic groups. Let x ∈ G, and x = xsxu be the Jordan decomposition. Then

ρ(x) = ρ(xs)ρ(xu)

is the Jordan decomposition of ρ(x) in GL(V ).

Proof. By Lemma 5.17, we have an isomorphism of representations between V and a G-
invariant subspace V ′ ⊂ An depicted as the following commutative diagram, where x ∈ G is
arbitrary.

V V ′ An

V V ′ An

∼=

ρ(x) ρ∗x|V ′ ρ∗x

∼=

Let x ∈ G and x = xsxu be the Jordan decomposition in G, so we have ρ(x) = ρ(xs)ρ(xu),
which we want to show is the Jordan decomposition. We know that ρ∗x = ρ∗xsρ

∗
xu is the Jordan

decomposition of ρ∗x in GL(An) (basically by the construction of xs, xu in Proposition 5.10).
That is, in the following diagram we know that the left and right sides are Jordan

decompositions, but we want to verify that the central vertical composition is a Jordan
decomposition.

V V ′ An

V V ′ An

V V ′ An

∼=

ρ(xu) ρ∗xu |V ′ ρ∗xu

∼=

ρ(xs) ρ∗xs |V ′ ρ∗xs

∼=

As V ′ is a G-invariant subspace, ρ∗xs|V ′ and ρ∗xu|V ′ are respectively semisimple and unipotent,
so

ρ∗x|V ′ = ρ∗xs|V ′ρ
∗
xu|V ′

is the Jordan decomposition in V ′, hence the isomorphism V ∼= V ′ forces ρ(x) = ρ(xs)ρ(xu)
to be the Jordan decomposition in GL(V ).

Proposition 5.19. If G is a closed subgroup of GL(V ), and j : G ↪→ GL(V ) is the inclusion,
and x ∈ G, then

j(x) = j(xs)j(xu)

is the Jordan decomposition of j(x) in GL(V ).
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Proof. Immediate from previous lemma.

Proposition 5.20. The Jordan decomposition is preserved by a morphism of algebraic
groups. That is, if ρ : G → G′ is a morphism of algebraic groups, and x = xsxu ∈ G
is a Jordan decomposition, then

ρ(x) = ρ(xs)ρ(xu)

is the Jordan decomposition of α(x) in G′.

Proof. This is also nearly immediate from previous results. Let j : G′ → GL(V ) be an
embedding, and consider the composition

G
ρ−→ G′

j−→ GL(V )

For x = xsxu ∈ G, by Lemma 5.18,

jρ(x) = jρ(xs)jρ(xu)

is the Jordan decomposition of ρj(x) in GL(V ). Then by Proposition 5.19, because j is an
inclusion, this implies that

ρ(x) = ρ(xs)ρ(xu)

is the Jordan decomposition in G′.

5.4 Kolchin’s theorem

Definition 5.21. Let G be an algebraic group. Set

GS = {x ∈ G : x is semisimple}
GU = {x ∈ G : x is unipotent}

Note that these are not necessarily subgroups or even subvarieties. There are some difficult
theorems which tell us whether these are groups under additional hypotheses on G. If
G = GU , then G is called unipotent, and if G = GS, then G is called semisimple.

Remark 5.22. If G is an abelian algebraic group, then GS, GU are both closed subgroups,
and G = GSGU . Even better, since GS ∩GU = {e}, this is a direct product: G ∼= GS ×GU .
This is true because when G is abelian, all elements of G can be simultaneously diagonal-
ized (after embedding G into some GL(V )). The question then arises, under what weaker
hypotheses (weaker than abelian) can this be done? One partial answer to this is given by
Kolchin’s theorem (Theorem 5.29).

Definition 5.23. A semigroup is a set with a binary operation which is associative. As a
visual aid in keeping the terms groupoid, semigroup, monoid, and group straight, we include
the following table. Each object has all the properties of the previous object, in addition to
the new property.
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Name Property
Magma/groupoid Set with binary operation
Semigroup Associativity
Monoid Identity
Group Inverses

Definition 5.24. Let S be a groupoid. An S-module is an abelian group M with a map
S ×M →M, (x,m) 7→ x ·m such that for all x, y ∈ S and m,n ∈M ,

x · (y ·m) = (xy) ·m
x · (m+ n) = x ·m+ x · n

This is just like a group action, except without the identity requirement, since S need not
have any identity. If S is a semigroup, we use this definition for S-module. If S is a monoid
with identity e, we add the requirement that e ·m = m for all m. If S is a group, we use
the monoid definition. As usual, a module structure is the same as having a morphism of
groupoids/semigroups/monoids

ρ : S → EndZ(M)

If S is a groupoid, we have no requirements on this map other than preserving the binary
operation, which is to say, ρ(xy) = ρ(x) ◦ ρ(y). If S is a semigroup nothing changes. If S is
a monoid with identity e, then we require ρ(e) = IdM .

Definition 5.25. Let S be a groupoid and let M be an S-module. A submodule is a
subgroup N ⊂ M such that N is S-invariant, which is to say, N is an S-module in its own
right. A module M is simple if it has no nonzero proper submodules.

Lemma 5.26. Let S be a semigroup of endomorphisms of a finite dimensional vector space
V such that V is a simple S-module. Then S contains a basis of EndK(V ).

Proof. See Lang Algebra page 819 [4].

Lemma 5.27. Let V be an n-dimensional K-vector space, and let S be a semigroup of
endomorphisms of V such that V is a simple S-module. Suppose the set

{tr s : s ∈ S} ⊂ K

is finite with cardinality r. Then S is a finite set and |S| ≤ rn
2
.

Proof. By Lemma 5.26, S contains a basis {s1, . . . , sn2} of EndK(V ). Consider the map

φ : S → Kn2

x 7→ (tr(xs1), . . . , tr (xsn2))

Since xsi ∈ S for all i, the image of φ is a finite set of size ≤ rn
2
. Furthermore, if x, y ∈ S such

that φ(x) = φ(y), then tr((x−y)si) = 0 for all i, hence tr((x−y)z) = 0 for all z ∈ EndK(V ).
Since tr is a nondegenerate bilinar form, so this is impossible, hence φ(x) = φ(y) =⇒ x = y,
so φ is injective. Thus |S| ≤ rn

2
.
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Definition 5.28. Let V be a finite dimensional vector space. A flag in V is an sequence of
subspaces

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V

of increasing dimension. That is, if di = dimK Vi, then

0 = d0 < d1 < · · · < dn = dimK V

A complete flag is a flag such that di = i for all i. A flag that is not complete is called a
partial flag. Another way to say that a flag is complete is that dimK(Vi+1/Vi) = 1 for all
i = 0, . . . , n− 1.

Theorem 5.29 (Kolchin). Let V be an n-dimensional K-vector space, and let G ⊂ GL(V )
be a closed subgroup consisting of unipotent elements. Then there is a basis of V such that
G is contained in the subgroup of upper triangular matrices. That is, each element of G fixes
a complete flag

0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = V

Proof. First we claim that there is a flag

0 = V0 ( V1 ( · · · ( Vr−1 ( Vr = V

such that G(Vi) ⊂ Vi for all i and Vi+1/Vi is a simple G-module. This is an easy induction on
n, as follows. If n = 1 this is clear. For the inductive step, Let V ′ ( V be a properG-invariant
set of maximal dimension. By induction, there is a flag 0 = V0 ⊂ · · · ⊂ Vr−1 = V ′ with
Vi+1/Vi a simple G-module. If V/V ′ is not simple, then there is a G-submodule W ⊂ V/V ′

which lifts to a G-invariant subspace W ⊂ V which contains V ′, contradicting maximality
of V ′, hence V/V ′ is simple. Hence

0 = V0 ( V1 ( · · · ( Vr−1 = V ′ ⊂ Vr = V

is such a flag for V . This completes the induction. Now take a flag as above, and let

ρi : G→ GL(Vi+1/Vi)

be the induced representation for each i. Since the elements of G are unipotent, there is a
single trace value (namely the dimension), so by Lemma 5.27, |ρi(G)| = 1. Thus ρi is the
trivial constant map. Thus dimVi+1/Vi = 1 since the identity keeps every subspace invariant.
Thus the flag we constructed is the required complete flag (which is fixed by any x ∈ G).

Remark 5.30. Kolchin’s theorem 5.29 is true for any field, we don’t need K to be alge-
braically closed.

Remark 5.31. Examining the proof of Kolchin’s theorem 5.29 and Lemma 5.27 closely, we
see that a subgroup of GLn(K) with r conjugacy classes must be finite with at most rn

2

elements. Using the contrapositive, an infinite affine algebraic group has infinitely many
conjugacy classes.

A similar proof shows that if charK = 0 and S is a subgroup of GL(V ) with non
nontrivial unipotent elements with r traces, then |S| ≤ rn

2
where n = dimK V , hence any

torsion subgroup of GL(V ) with bounded exponent is finite. Along similar lines, any torsion
subgroup of GLn(Z) is finite of order ≤ (2n+ 1)n

2
, by a result of Burnside.

Remark 5.32. By taking any nonzero vector in V0 from the complete flag of Kolchin’s
theorem 5.29, we obtain a vector which is an eigenvector for every element of G.
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6 Diagonalizable groups

6.1 Unipotent, nilpotent, and solvable groups

Definition 6.1. Let G be a group. Let G0 = G(0) = G, and define Gi, G
(i) recursively by

Gi+1 = [G,Gi] G(i+1) = [G(i), G(i)]

Note that

Gi ⊃ Gi+1 G(i) ⊃ G(i+1)

(in fact, these are normal subgroups). The group G is nilpotent if Gi is trivial for some i,
and G is solvable if G(i) is trivial for some i. That is, G is nilpotent if

G = G0 ⊃ G1 ⊃ · · · ⊃ Gn = 1

terminates and G is solvable if

G = G(0) ⊃ G(1) ⊃ · · · ⊃ G(n) = 1

terminates.

Remark 6.2. Every nilpotent group is solvable. A subgroup of a solvable (respectively
nilpotent) group is solvable (nilpotent). Similar statements hold for homomorphic images,
etc.

Example 6.3. Let K be any field. The subgroup of GLn(K) of upper triangular matrices
is solvable, but not nilpotent. The subgroup of upper triangular matrices with 1’s on the
diagonal is nilpotent (and hence solvable as well).

Corollary 6.4. Every unipotent algebraic group is nilpotent.

Proof. By Kolchin’s theorem, if G is unipotent, it is isomorphic to a subgroup of upper
triangular matrices with 1’s on the diagonal, which is a nilpotent group.

Remark 6.5. Let G be an algebraic group acting on an affine variety V . Recall that
each orbit of G is open in its closure, and minimal dimension orbits are closed. The next
proposition gives a stronger version of this when G is unipotent.

Proposition 6.6. Let G be a unipotent algebraic group acting on a variety V . Then every
orbit is closed.

Proof. We have a morphism α : G × V → V of affine varieties, inducing a K-algebra
homomorphism

α∗ : K[V ]→ K[G]⊗K K[V ]

For each x ∈ G, define the K-algebra endomorphism

x∗ : K[V ]→ K[V ] (x∗f)(v) = f(x−1v)
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Note that (xy)∗ = x∗y∗, so we have a group homomorphism

G→ AutK(K[V ]) x 7→ x∗

As in Lemma 2.10, we can show that the vector space

Wf = 〈x∗f : x ∈ G〉K

is finite dimensional over K, and invariant under G. So the action of G on K[V ] is locally
finite. As in Lemma 2.13, the morphism

G→ GL(Wf ) x 7→ x∗|Wf

is a morphism of algebraic groups. Now, since x ∈ G is unipotent, x∗|Wf
is unipotent for

any x ∈ G, f ∈ K[V ]. Also, K[V ] =
∑

f Wf , so x∗ is locally unipotent for each x ∈ G.
Let O ⊂ V be an orbit of G, and suppose that O is not closed. It is open in its closure

O, and O \ O is a union of smaller dimensional orbits (Corollary 3.6). Hence O \ O is a
proper closed subset of O, so there exists f ∈ K

[
O
]

such that f |O 6= 0 but f |O\O = 0. Fix

such an f . We will say f has property (∗). Since O \ O is a union of orbits, x∗f (for any
x ∈ G) also has property (∗).

(x∗f)|O 6= 0 (x∗f)|O\O = 0

Since G is unipotent, {
x∗|Wf

: x ∈ G
}

is a unipotent subgroup of GL(Wf ), so by Kolchin’s theorem 5.29 and Remark 5.32, there
is a common (nonzero) eigenvector f0 ∈ K

[
O
]
. Since f0|O 6= 0 and every element of Wf is

zero on O \ O, f0 also has property (∗). Since G is unipotent, the only possible eigenvalue
for f0 is 1, so x∗f0 = f0 for all x ∈ G.

Because x∗f0 = f0, f0(x
−1) = f0(v) for all x ∈ G, so f0 is constant on each orbit in O.

Hence f0 is constant on O, since O) is an open orbit in O. Hence f0 is constant on O, since
O is dense in O, and

{
v ∈ O : f0(v) = λ

}
is a closed subset of O containing O. Since f0 = 0

on O \ O, f0 = 0 on O. This is a contradiction, so we conclude that O was closed to begin
with.

6.2 Diagonalizable groups and characters

Definition 6.7. An affine algebraic group G is diagonalizable if G is abelian, and every
x ∈ G is semisimple (G = GS).

Example 6.8. The algebraic group Gm
∼= K× is diagonalizable. (The coordinate ring is

K[x, x−1].)

Definition 6.9. Let G be an algebraic group. A character of G is an algebraic group
homomorphism χ : G→ Gm. The group of characters of G is

X(G) = Hom(G,Gm)
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Note that X(G) is an abelian group under pointwise multiplication. That is, multiplication
is defined for f, g ∈ X(G) by

(fg)(x) = f(x)g(x)

where x ∈ G.

Example 6.10. We show that the character group of Gm is (isomorphic to) Z. First, note
that K[Gm] ∼= K[x, x−1]. For α ∈ X(Gm) = Hom(Gm,Gm), consider α∗ : K[x, x−1] →
K[x, x−1]. Since α∗ is a K-algebra homomorphism, it is determined by the value of x, so let

α∗(x) =
f(x)

xn

where f ∈ K[x] is some polynomial and n ∈ Z. We claim that f has no nonzero roots.
Suppose λ ∈ Gm is a (nonzero) root of f(x). Then for any h ∈ K[Gm] ∼= K[x, x−1], write h
as a (finite) sum

h =
∑
i∈Z

βix
i βi ∈ K

then

α∗(h) = α∗
∑
i

βix
i =

∑
i

βi(α
∗x)i =

∑
i

βi

(
f(x)

xn

)i
Evalutaing α∗(h) at λ, each term of the sum is zero, so

0 = α∗(h)(λ) = h(α(λ))

Since h ∈ K[Gm] was arbitrary, this says that all elements of K[Gm] take the same value
at α(λ), which contradicts the separation of points axiom. Hence no such nonzero λ exists.
Thus α∗(x) = cxm for some m ∈ Z, c ∈ K. Since α∗(1) = 1, we get c = 1, so

α : Gm → Gm g 7→ gm

Thus we obtain an isomorphism of groups

X(Gm)
∼=−→ Z (g 7→ gm) 7→ m

Proposition 6.11. Let G be an algebraic group. The following are equivalent.

1. G is diagonalizable.

2. G is isomorphic to a closed subgroup of Dn = (GL1(K))n = (Gm)n.

3. K[G] is spanned (as a K-vector space) by characters of G.

Proof. (1) =⇒ (2) G is an affine group, so it is linear, so we have an embedding G ↪→ GL(V )
where V is a finite dimensional K-vector space. Since G is diagonalizable, it is abelian, so
there is a basis of V which simultaneously diagonalizes the image of G in GL(V ). So G is
isomorphic to a closed subgroup of (Gm)n.
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(2) =⇒ (3) Let G be a closed subgroup of Dn. For m1, . . . ,mn ∈ Z,

G→ Gm x = diag(x11, . . . , xnn) 7→ xm1
11 · · ·xmnnn

is a character of G. K[G] consists of Laurent polynomials in the xii, hence the characters
span K[G].

(3) =⇒ (1) Let f : G→ Gm be a character, so f(xy) = f(x)f(y) for x, y ∈ G. Thus

ρ∗y(f)(x) = f(xy) = f(x)f(y) =⇒ ρ∗yf = f(y)f

so each character f ∈ X(G) is an eigenvector for ρ∗y (where y ∈ G is arbitrary). Since
the characters span K[G], ρ∗y is semisimple, hence y ∈ G is semisimple, so G = GS. Also,
ρ∗yρ

∗
z = ρ∗zρ

∗
y (because they act by scalar multiplication on K[G]) so G is abelian as well,

hence G is diagonalizable.

Lemma 6.12 (Linear independence of characters, due to Artin). Distinct characters of a
group G into the multiplicative group of a field K× are linearly independent as K-valued
functions on G.

Proof. See Lang [4] or other sources.

Remark 6.13. If G is diagonalizable, then X(G) spans K[G] as a K-vector space, and it is
a linear indepenedent set, so X(G) is a basis for K[G].

Proposition 6.14. Let G be a diagonalizable group. Then X(G) is finitely generated
(abelian).

Proof. By Proposition 6.11, K[G] is spanned by characters. Since K[G] is a finitely generated
K-algebra, there exist χ1, . . . , χn ∈ X(G) which generate K[G] as a K-algebra. Let H ⊂
χ(G) be the subgroup generated by χ1, . . . , χn.

H = {χr11 . . . χrnn : ri ∈ Z}

Now any element of K[G] is a finite linear combination of elements of H. We claim that
H = X(G), which will show that χ(G) is finitely generated. Let χ ∈ X(G) ⊂ K[G],
and suppose χ 6∈ H. Since H generates K[G] as a K-algebra, we may write χ as a linear
combination

χ =
∑
j

ajηj

where ηj ∈ H, aj ∈ K, and we combine terms so that all of the ηj are distinct. We rewrite
this as

0 = χ−
∑
j

ajηj

Since χ 6∈ H, χ is distinct from all of the ηj. But by linear independence of characters, all of
the aj must be zero so χ = 0, but this is not a character, so we have a contradiction. Thus
χ ∈ H, and H = K[G], so K[G] is finitely generated.
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Proposition 6.15. Let G be a diagonalizable group and H a closed subgroup of G. Let
χ ∈ X(H). Then χ extends to a character χ̃ ∈ X(G), and

H =
⋂

χ∈X(G)

kerχ

(this intersection statement is not right)

Proof. It suffices to prove this in the case G ∼= Gn
m, since then one obtains an extension to

G by considering H ⊂ G ⊂ Gn
m and restricting the extension to Gn

m to G.
We start by addressing the case n = 1, the general case will be very similar. Let ι :

H ↪→ Gm be the inclusion, and let χ : H → Gm be a character of H. Finding an extension
β : Gm → Gm of χ is equivalent to finding an extension β∗ in the corresponding K-algebra
homomorphism diagram,

H Gm K[H] K[Gm]

Gm Gm

ι

χ

ι∗

χ∗
β∗

Now recall that K[Gm] = K[x, x−1], and K[H] = K[x, x−1]/I for some ideal I ⊂ K[x, x−1].
Also, ι∗ is just the quotient map, or alternatively, the restriction map, since for f ∈ K[Gm] =
K[x, x−1] and h ∈ H,

(ι∗f)(h) = f ◦ ι(h) = f(h) =⇒ ι∗f = f |H = res f

So we redraw our K-algebra diagram as

K[x, x−1]/I K[x, x−1]

K[x, x−1]

res

χ∗
β∗

The notation is a bit funky, but x ∈ K[x, x−1] is just the inclusion map x : Gm = K× ↪→ K.
So for h ∈ H,

(χ∗x)(h) = x ◦ χ(h) = χ(h) =⇒ χ∗x = χ

As K[x, x−1] is generated as a K-algebra by x and x−1, to define β∗ is suffices to define it
on x and verify that β∗x is invertible, so that we can set β∗(x−1) = (β∗x)−1. We can write
χ ∈ K[x, x−1]/I as

χ = χ̃+ I χ̃ ∈ K[x, x−1]

That is, we choose a lift χ̃ of χ. As χ is nowhere vanishing (it maps to Gm), χ 6= 0 so χ̃ is not
in I, and in particular, χ̃ : K[x, x−1] is nowhere vanishing, so it is invertible 3. So we define

β̃∗(x) = χ̃ and we have defined a K-algebra homomorphism making this diagram commute.

3Here invertible does not mean that it has an inverse function. It just means it is an invertible element
of K[x, x−1].
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This K-algebra homomorphism then corresponds to a morphism of varieties β : Gm → Gm

extending χ.
To prove this in the more general case of G = Gn

m, use roughly the same argument. It is
sufficient to find a K-algebra homomorphism K[Gn

m]→ K[Gn
m] extending χ∗ : K[Gn

m]→ H.
Now K[Gn

m] = K[x1, . . . , xn, x
−1
1 , . . . , x−1n ] and K[H] is once again a quotient of this. In this

setting,
(χ∗xi)(h) = xi ◦ χ(h)

By the same process as in the n = 1 case, define β∗(xi) to be a lift of xi ◦ χ(h), and things
work out as in the n = 1 case.

Remark 6.16. If G1, G2 are diagonalizable, then G1 ×G2 is diaganalizable, and

X(G1 ×G2) ∼= X(G1)×X(G2)

Definition 6.17. For a field K, let

p(K) =

{
charK if charK 6= 0

1 if charK = 0

Proposition 6.18. If G is a diagonalizable algebraic group over a field with characteristic
p(K) ≥ 2, then X(G) has no p-torsion.

Proof. Suppose χ ∈ X(G) such that χp = 1. Then for all x ∈ G,

χ(x)p = χp(x) = 1

the above being an equality in K. Since K has characteristic p, xp − 1 = (x − 1)p, so the
only pth root of unity is 1, hence χ(x) = 1, so χ = 1.

Proposition 6.19. Let K be a field with p = p(K), and let X be a finitely generated abelian
group with torsion prime to p. Then there exists a diagonalizable group G (over K) with
X(G) ∼= X.

Proof. Since X(G1 × G2) ∼= X(G1) × X(G2), using the classification of finitely generated
abelian groups, it suffices to prove this when X is cyclic. If X is infinite cyclic, then we have
already shown in Example 6.10 that X(Gm) ∼= Z ∼= X, so it just remains to address the case
where X ∼= Z/nZ is finite cyclic and gcd(n, p) = 1.

Let G ⊂ Gm
∼= K× be the group of nth roots of unity. Then G is a closed subgroup of

Gm and hence diagonalizable. Let α ∈ X(G), so α : G → Gm is a morphism of algebraic
groups. The image of α must be in the n-torsion of Gm, which is G, so we may view α as
a morphism G → G. Since G is cyclic, α : G → G must be a map of the form ζ 7→ ζn for
some m ∈ Z, hence X(G) ∼= Z/nZ.

Remark 6.20. Let G,G′ be diagonalizable groups, and let φ∗ : X(G′)→ X(G) be a group
homomorphism. Since X(G′) is a K-basis for K[G′], φ∗ extends by linearity to a K-linear
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map φ∗ : K[G′]→ K[G]. Even better, we can show that this extension of φ∗ is a K-algebra
homomorphism, as follows. Let f, g ∈ K[G′], and write them (uniquely) as

f =
∑
i

aiλi g =
∑
j

bjµj

with ai, bj ∈ K,λi, µj ∈ X(G′). Then using the fact that φ∗ is a group homomorphism,

φ∗(fg) = φ∗
((∑

aiλi

)(∑
bjµj

))
= φ∗

(∑
aibjλiµj

)
=
∑

aibjφ
∗(λiµj)

=
∑

aibjφ
∗(λi)φ

∗(µj)

=

(∑
i

aiφ
∗(λi)

)(∑
j

bjφ
∗(µj)

)
= φ∗(f)φ∗(g)

Hence φ∗ extends uniquely to a K-algebra homomorphism.

Proposition 6.21. Let G,G′ be diagonalizable groups. Given any homomorphism φ∗ :
X(G′) → X(G), there exists a unique morphism of algebraic groups α : G → G′ such that
the K-linear extension of φ∗ : K[G′]→ K[G] is equal to α∗ : K[G′]→ K[G].

Proof. Extend φ∗ to a morphism of K-algebras φ∗ : K[G′]→ K[G] as in the previous remark.
For each x ∈ G, the composition evx ◦φ∗ is a K-algebra homomorphism K[G] → K, so it
is the evaluation map at some (unique) point, which we denote by α(x). Thus we obtain a
map α : G → G′ satisfying evα(x) = evx ◦φ∗ for all x ∈ G. Then it is clear that α∗ = φ∗, so
α is a morphism of varieties.

It remains to show that α is a group homomorphism. Consider f ∈ X(G′), and x, y ∈ G.
Then

f(α(xy)) = (α∗f)(xy) = (α∗f)(x) · (α∗f)(y) =
(
f ◦ α(x)

)
·
(
f ◦ α(y)

)
= f(α(x)α(y))

Since f ∈ X(G′) was arbitrary and X(G′) is a basis of K[G′], the above equality holds for
all f ∈ K[G′]. Then by the separation of points axiom, α(xy) = α(x)α(y) for all x, y, hence
α is a morphism of algebraic groups.

Finally, we need to show that α is unique. Suppose α, β : G→ G′ are such that α∗ = β∗.
Then for all f ∈ K[G′] and x ∈ G,

f(α(x)) = α∗f(x) = β∗f(x) = f(β(x))

Again using the separation of points axiom, this implies α(x) = β(x), so α = β.

At this time, we take a moment to remind you that everything is happening over a fixed
algebraically closed field K.
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Remark 6.22. Given a digaonalizable group G over K, we have shown that X(G) =
Hom(G,Gm) is a finitely generated abelian group with torsion prime to p(K). Given a
morphism α : G → G′ of diagonalizable algebraic groups, there is the usual induced map
associated with the (contravariant) hom functor,

X(G′)→ X(G) f 7→ f ◦ α = α∗(f)

Thus the assignment G 7→ X(G) is a (contravariant) functor. Proposition 6.19 shows that
this functor is essentially surjective (“surjective” in terms of isomorphism classes of objects).
Proposition 6.21 shows that this functor is fully faithful (induces isomorphisms on hom sets).
Thus it is an equivalence of categories. By Remark 6.16, it also preserves binary products.
We state this as a theorem for reference.

Theorem 6.23 (Equivalence of categories). The assignment

{diagonalizable groups} → {finitely generated abelian groups with torsion prime to p(K)}
G 7→ X(G) = Hom(G,Gm)

is an equivalence of categories.

Remark 6.24. Because X(−) is an equivalence of categories, it is an exact functor.

6.3 Tori

Proposition 6.25. Let G be a diagonalizable group. The following are equivalent.

1. G is connected.

2. G ∼= (Gm)n for some n.

3. X(G) is free abelian.

Proof. We prove (1) =⇒ (3) =⇒ (2) =⇒ (1).
(1) =⇒ (3) As G is connected, K[G] is an integral domain (Lemma 2.21). So X(G) ⊂ K[G]
cannot have any torsion, so X(G) is free abelian.
(3) =⇒ (2) By the previous theorem, if X(G) is free abelian, then G ∼= (Gm)n.
(2) =⇒ (1) Clear.

Definition 6.26. A diagonalizable group satisfying the above equivalent conditions is called
a torus.

Remark 6.27. If G is a diagonalizable group, then G0 is connected so it is a torus, hence
G0 ∼= (Gm)n for some n. Recall that G0 is a normal subgroup of finite index (Proposition
2.25), and consider the short exact sequence

1→ G0 → G→ G/G0 → 1
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Since G0 has finite index, G/G0 is finite and discrete. Now apply the (contravariant) exact
equivalence of categories X(−).

1→ X(G/G0)→ X(G)→ X(G0)→ 1

Since X(G0) is free abelian (hence projective), this sequence splits, so the original sequence
is also split. Hence we can decompose any diagonalizable group G as a product of the torus
identity component G0 with a finite abelian group with torsion prime to p(K).

G ∼= G0 ×G/G0

Proposition 6.28. Let G be a diagonalizable algebraic group.

1. The elements of finite order are dense in G.

2. For an integer n, there exist only finitely many elements of order n.

3. If K is not finite, and G is a torus over K, then there is an element x ∈ G whose
powers are dense in G.

Proof. (1) Decompose G as

G ∼= (Gm)n ×
m∏
i=1

Z/niZ〈αi〉

Letting x1, . . . , xn, y1, . . . , ym be free variables,

K[G] ∼= K[x1, . . . , xn, y1, . . . , ym]/I ∼= K[x1, . . . , xn, α1, . . . , αm]

where I is the ideal generated by αn1
1 − 1, . . . , αnmm − 1. We claim that there is no f ∈ K[G]

that vanishes on all (n+m)-tuples of roots of unity, but not on all of G. If this is true, then
there is no closed subset of G containing all roots of unity which does not contain all of G,
which is to say, the elements of finite order are dense.

We begin by addressing the case n = 1. Let f ∈ K[G] and suppose f vanishes at all
tuples of roots of unity, and write it as

f(x, α1, . . . , αm) =
∑
i

aiα(i)xi

where ai ∈ K and α(i) is some polynomial in the variables αi. Choose various roots of
unity ζ1, . . . , ζm ∈ K× and evaluate f(x, ζ1, . . . , ζm), we obtain a single variable polynomial
f(x) ∈ K[x], which vanishes at all roots of unity in K. Since K is algebraically closed, there
are infinitely many of these, hence f vanishes on all of G.

If n > 1, we can do a similar trick to reduce to the n−1 case by writing f as a polynomial
in one fewer variable, so an induction completes the proof.

(2) As G ⊂ Gn
m for some n, it suffices to show that Gn

m has finitely many elements of a
given finite order. Since n is finite, it suffices to show that Gm has finitely many elements of
a given finite order. This is obvious, because Gm

∼= K× and K× has at most m mth roots
of unity.

(3) Proof not done in class.
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Remark 6.29. Let T be a torus, and consider elements α1, . . . , αr ∈ X(T ). To say that
these elements are “linearly inpendent” is mildly ambiguous, since they may be linearly inde-
pendent as elements of the free abelian group X(T ), or they may be linearly independent as
functions T → K. However, one of these is strictly weaker, since being linearly independent
as elements of X(T ) implies they are also linearly indepent as functions on T .

Proposition 6.30. Let T be a torus, and let α1, . . . , αr ∈ X(T ) be linearly independent as
elements of X(T ). Let c1, . . . , cr ∈ Gm. Then there exists t ∈ T such that αi(t) = ci for all
i.

Proof. Consider the function

f : T → Gr
m x 7→ (α1(x), . . . , αr(x))

This is a morphism of algebraic groups, and the proposition is equivalent to surjectivity of f .
Since α1, . . . , αr are linearly independent, they generate a free abelian subgroup of X(T ), so
al of the monomials in them are distinct and linearly independent as functions on T . Hence

f ∗ : K[Gr
m]→ K[T ]

is injective. Thus f as dense image in Gr
m. Since f is a morphism of algebraic groups, f(T )

is closed in Gr
m. Thus f is surjective.

6.4 Rigidity theorem, stabilizers, normalizers, and centralizers

Theorem 6.31 (Rigidity Theorem). Let V be a connected affine variety and H,H ′ be alge-
braic groups satisfying

1. Elements of finite order in H are dense (in H).

2. Elements of any given finite order in H ′ are finite.

Let α : V ×H → H ′ be a morphism of varieties, such that for each v ∈ V ,

αv : H → H ′ h 7→ α(v, h)

is a homomorphism of algebraic groups. Then

V → Hom(H,H ′) v 7→ αv

is a constant map. That is, for v, v′ ∈ V , αv = αv′.

As a slogan, one may remember the previous theorem as saying that under certain circum-
stances (V is connected, H,H ′ have properties 1,2), that there is no nonconstant family of
algebraic group homomorphisms parametrized by a variety V . Stated this way, the theorem
is quite amazing and profound, so it is a surprise that the proof is relatively simple.
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Proof. For h ∈ H, consider the morphism of varieties

αh : V → H ′ v 7→ αv(h)

and let
Sh = imαh = {αv(h) : v ∈ V }

Suppose h ∈ H has finite order. Then for each v ∈ V , |αv(h)| divides |h|, so the order of
any element in Sh is bounded above by |h|. Hence Sh is finite (by our finiteness hypothesis
on H ′).

Since V is connected, Sh is connected. Since Sh is a connected finite set, it is a point.
Hence αv(h) = αv′(h) for all v, v′ ∈ V , provided h has finite order. Since such elements are
dense in H by hypothesis, we are nearly done.4 If we show that given v, v′ ∈ V , the set

Uv,v′ = {h ∈ H : αv(h) = αv′(h)}

is closed in H, then since it also contains a dense subset of H (the finite order elements), it
must be all of H. So it just remains to show Uv,v′ ⊂ H is closed. To see this, consider the
morphism of varieties

β : H → H ′ ×H ′ h 7→ (αv(h), αv′(h))

Then Uv,v′ is the preimage of the diagonal ∆(H ′) = {(h′, h′) : h′ ∈ H ′}, which is a closed
subset, so Uv,v′ is closed.

Uv,v′ = β−1 (∆(H ′))

Remark 6.32. By Proposition 6.28, the hypotheses of the Rigidity theorem 6.31 are satisfied
whenever H,H ′ are diagonalizable.

Definition 6.33. Let G be a group and H ⊂ G any subset. The normalizer and central-
izer of H in G are respectively

NG(H) =
{
g ∈ G : gHg−1 = H

}
ZG(H) =

{
g ∈ G : ghg−1 = h, ∀h ∈ H

}
Note that ZG(H) ⊂ NG(H).

Lemma 6.34. Let G be an algebraic group and H ⊂ G a (closed, algebraic) subgroup. Then
NG(H) and ZG(H) are (closed, algebraic) subgroups of G.

4When I first saw this proof, I thought we were done at this point, since I recalled a result which says
that a continuous function is determined by its values on a dense subset. However, I had forgotten that this
result needs the additional hypothesis that the space involved in Hausdorff, which is not true for Zariski
topologies.
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Proof. For h ∈ H, consider

G→ G g 7→ [g, h] = ghg−1h−1

This is a morphism of algebraic groups, with kernel ZG(h). Thus ZG(h) is a closed subgroup
of G. Then observe

ZG(H) =
⋂
h∈H

ZG(h)

hence ZG(H) is a closed subgroup of G. For normalizers, see a proof in Humphreys [3], page
59.

Corollary 6.35. Let G be an algebraic group and H ⊂ G a (closed) diagonalizable subgroup.
Then

1. NG(H)0 = ZG(H)0. In particular, if G is connected and H is normal, then H is
central.

2. NG(H)/ZG(H) is finite.

Proof. (1) Apply the Rigidity theorem 6.31 in the case V = NG(H)0, H = H,H ′ = H with

α : NG(H)0 ×H → H (v, h) 7→ vhv−1

By the Rigidity theorem, αv does not depend on v, so vhv−1 = ehe−1 = h for all v ∈ NG(H)0.
Hence v ∈ ZG(H), so NG(H)0 ⊂ ZG(H)0. The reverse inclusion is clear.

(2) Using(1), NG(H)/ZG(H) is the homomorphic image of the finite groupNG(H)/NG(H)0,
as depicted below.

NG(H)→ NG(H)/NG(H)0 ∼= NG(H)/ZG(H)0 → NG(H)/ZG(H)

The first and last arrows are both quotient maps, and the middle two terms are finite groups,
so the last term is also finite.

Definition 6.36. Let G be a group acting on a set V . Given a set H ⊂ G, the fixed points
of H are

fix(H) = {v ∈ V : hv = v, ∀h ∈ H}

Given a subset U ⊂ V , the pointwise stabilizer of U is

stabp(U) = {g ∈ G : gu = u, ∀u ∈ U}

Note that stab(U) is a subgroup of G. The setwise stabilizer of U is

stabs(U) = {g ∈ G : gU = U}

Disucssions of stabilizers in other sources are rarely this careful to distinguish, and the reader
often has to figure out which type of stabilizer is meant by the author. It is more common
to use “stabilizer” to refer to setwise stabilizer. However, in what follows, we will be more
concerned with pointwise stabilizers.
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Proposition 6.37. Let G be a diagonalizable algebraic group acting on an affine variety V .

1. Finitely many subsets of V occur as fixed point sets of subsets of G.

2. Finitely many subgroups of G occur as pointwise stabilizers of subsets of V .

3. If G is connected, then there exists x ∈ G such that xv = v implies yv = v for all
y ∈ G. The set of all such x is dense.

Proof. Before addressing any of (1),(2),(3) directly, we need a lot of set up. Since G is
diagonalizable, it acts on K[V ] by semisimple K-algebra automorphisms,

G×K[V ]→ K[V ] (x, f) 7→ x · f = ρ∗xf

Since G is abelian, its image in Aut(K[V ]) is abelian, so there is a finite set {f1, . . . , fn} ⊂
K[V ] consisting of simultaneous eigenvectors for G, and so that {f1, . . . , fn} generates K[V ]
as a K-algebra. For each i, and each x ∈ G, let χi(x) be the eigenvalue associated to fi.

x · fi = χi(x)fi

That is, for v ∈ V ,
(x · fi)(v) = (ρ∗xfi)(v) = fi(xv) = χi(x)fi(v)

So for each i we have a function

χi : G→ K x 7→ χi(x)

Because x is semisimple, χi(x) 6= 0, so the image of χi lands in Gm. Also, for x, y ∈ G and
v ∈ V ,

χi(xy)fi(v) = fi(xyv) = fi(x · (yv)) = (x · fi)(yv) = χi(x)fi(yv) = χi(x)χi(y)fi(v)

thus χi(xy) = χi(x)χi(y), so χi is a character of G, χi ∈ X(G). Now, for any x ∈ G and
v ∈ V ,

xv = v ⇐⇒ fi(xv) = fi(v), ∀i

because the fi generate K[V ] as a K-algebra. Rearranging the equation on the right side,

xv = v ⇐⇒ fi(xv) = fi(v), ∀i
⇐⇒ χi(x)fi(v) = fi(v) ∀i
⇐⇒ (χi(x)− 1)fi(v) = 0 ∀i

Finally we have done enough setup and we can prove (1). Let S ⊂ G be any subset, and let

WS = fix(S) = {v ∈ V : xv = v, ∀x ∈ S}
JS = {i : 1 ≤ i ≤ n, χi|S 6= 1}
W̃S = {v ∈ V : fi(v) = 0, ∀i ∈ J}
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We claim that WS = W̃S. If v ∈ WS, then (χi(x)− 1)fi(v) = 0 for all i, so fi(v) = 0 for all

i ∈ J , proving WS ⊂ W̃S. If v ∈ W̃S, then fi(v) = 0 for all i ∈ J , and for i 6∈ J , χi(x)−1 = 0,

so xv = v and v ∈ WS, thus W̃S ⊂ WS.
This business with WS and W̃S shows that WS does not actually depend on S, but in

fact only depends on J . Since J is a finite subset of {1, . . . , n} there are only finitely many
such J , so there are only finitely many such WS = fix(S), so (1) is proved.

The proof of (2) is essentially the same idea as the proof of (1). We first address the case
of singleton subsets of V . Let v ∈ V , and let

Sv = stabp(v) = {x ∈ G : xv = v}
Jv = {i : fi(v) 6= 0}
S̃v = {x ∈ G : χi(x) = 0, ∀i ∈ J}

As in the proof of (1), one can verify that Sv = S̃v, so S̃v depends only on Jv. As there are
finitely many Jv, there are only finitely many Sv. If W ⊂ V is any subset, then

W =
⋂
v∈W

stabp(v)

so W is an intersection from a finite collection of sets, so there are only finitely many possible
W .

Now we prove (3). As G is connected, it is irreducible. Consider

Gi = {x ∈ G : χi(x) 6= 0} ⊂ G

This is an open subset, and if χi 6= 1 then Gi 6= ∅. If the action of G on V is trivial, then
the proposition is obvious, so we may assume the action is not trivial, so that some Gi is
non empty. Let

J = {i : Gi 6= ∅} = {i : χi 6= 1}
Since G is irreducible, ⋂

i∈J

Gi 6= ∅

Also note that this set is dense in G, as it is a finite intersection of open sets. Let x be an
element of the above intersection. We claim that such an x will work as in the statement of
the proposition. If xv = v, then (χi(x)− 1)fi(v) = 0 for all i. Since x ∈ Gi, χi(x)− 1 6= 0,
so fi(v) = 0 for all i ∈ J . Thus for any y ∈ G,

fi(v)(χi(y)− 1) = 0 ∀i

so yv = v. As already noted, the set of such x is dense.

Corollary 6.38. Let H be a diagonalizable subgroup of an algebraic group G. Then

1. The sets

{ZG(S) : S ⊂ H}
{ZH(S) : S ⊂ G}

are finite.
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2. If H is connected, then there is a dense subset S ⊂ H such that for any x ∈ S,
ZG(H) = ZG(x).

Proof. (1) Apply the previous proposition in the case where H acts on G by conjugation. In
this case,

ZG(S) = fix(S) ZH(S) =
⋂
x∈S

stabp(x)

so there are finitely many of each such set. (2) also follows from the previous proposition
using the same action.

7 Quotients and solvable groups

Theorem 7.1 (Lie-Kolchin theorem). Let V be an n-dimensional K-vector space, and let
G ⊂ GL(V ) be a closed subgroup which is connected and solvable. Then there is a basis of V
such that G is contained in the subgroup of upper triangular matrices. That is, each element
of G fixes a complete flag in V .

Proof. Later in the course.

Recall the notation

GU = {g ∈ G : g is unipotent}
GS = {g ∈ G : g is semisimple}

Theorem 7.2. Let G be a connected solvable algebraic group. Then

1. GU is a closed connected normal subgroup of G containing the commutator subgroup
[G,G].

2. If G is nilpotent, then GS is a closed torus in G, and the morphism

GS ×GU (s, u) 7→ su

is an isomorphism of algebraic groups.

3. The maximal (with respect to inclusion) tori are conjugates of each other. Also, if
T ⊂ G is a maximal torus, then G is a semidirect product of T and GU , and the
morphism

T ×GU → G (t, u) 7→ tu

is an isomorphism of varieties.

4. If S ⊂ GS is any subset, then there is a torus containing S. In particular, S is abelian.

5. If S ⊂ GS is any subset, then NG(S) = ZG(S) and NG(S) is connected.

Proof. Some of this we will prove later in the course.

Corollary 7.3. Let G be a connected solvable algebraic group.
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1. Every unipotent element (or unipotent subgroup) of G is contained in a connected
unipotent group (namely GU).

2. Every semisimple elemnt (or abelian subgroup of semisimple elements) of G is contained
in a torus.

Proof. Immediate from parts (1) and (4) of Theorem 7.2.

Remark 7.4. In the previous corollary, (1) holds in more generality. In particular, the
solvable hypothesis can be removed, although we may not get to proving this. However, the
analogous statement for (2) does not hold, which is to say, there are counterexamples to
the statement, “Every semisimple element in a connected algebraic group is contained in a
torus.” Again, we leave out the proof.

7.1 Complete varieties and Grassmannians

Remark 7.5. From now on in the course, the term “variety” will no longer refer to an
affine variety, but instead to a quasi-projective variety. Roughly speaking, a quasi-projective
variety is a (topological) space which has a finite open cover by affine varieties.

Really, a quasi-projective variety should be defined in terms of sheaves and schemes, but
there’s no time for that here. I apologize for being unable to give such a good intrinsic
definition of quasi-projective variety as was given for abstract affine varieties. Our professor
did not give a definition for this during the course. The reader may have to spend several
hours reading up on algebraic geometry to really understand what is meant by “quasi-
projective variety.” As a silver lining, at that point you’ll probably understand them better
than I do.

Definition 7.6. A variety V is complete if for any variety W the projection map

V ×W → W (v, w) 7→ w

is a closed map.

Example 7.7. A1 is not complete. (Why? What choice ofW fails to give a closed projection?
I have no idea.)

Proposition 7.8 (Properties of complete varieites). .

1. A subvariety of a complete variety is complete.

2. The image of a complete variety under a morphism is complete.

3. A product of complete varieities is complete.

4. A complete affine variety consists of finitely many points.

5. A morphism from a connected complete variety to an affine variety is a constant map.

6. A projective variety is complete
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7. A product of projective varieties is projective, hence complete.

Definition 7.9. Let V be an (n + 1)-dimensional K-vector space. The projectivization
of V , denoted P(V ), is the quotient of V by the action of K×. Alternatively, P(V ) is the set
of one dimensional subspaces of V . That is to say, for each v ∈ V , the element [v] ∈ P(V ) is
the equivalence class of all vectors λv for λ ∈ K×, or in the second interpretation, [v] is the
one dimensional subspace of V spanned by v.

If v1, . . . , vn+1 is a basis of V , and x ∈ V is written (uniquely) as

x =
∑
i

xivi

we call (x1, . . . , xn+1) the coordinates of x in V , with respect to the basis v1, . . . , vd. Similarly,
we call [x1 : · · · : xn+1] the homogeneous coordinates of x in P(V ), with respect to
the basis v1, . . . , vd. Note that homogeneous coordinates are not unique, in contrast with
coordinates in V , since the same coordinates multiplied by a nonzero scalar represent the
same point in P(V ).

Definition 7.10. Let V be an (n+ 1)-dimensional K-vector space. Let

Gd(V ) = {U ⊂ V : U is a d-dimensional subspace}

Gd(V ) is called a Grassmannian, and often notated Gd(n + 1) or G(d − 1, n). As we will
see in a moment, Gd(V ) is a projective variety. It has dimension d(n + 1 − d), though we
omit justification of the dimension computation. To make Gd(V ) into a variety, we consider
the map

Gd(V )→ P
(∧d

V
)

span(v1, . . . , vd) 7→ [v1 ∧ · · · ∧ vd]

First, we need to justify why this is well defined, since a priori another choice of basis for
span(v1, . . . , vn) might not give the same wedge product. However, if v′1, . . . , v

′
d is another

basis fo span(v1, . . . , vd), then we have a change of basis matrix A which changes from the
basis v1, . . . , vd to v′1, . . . , v

′
d, and one can check that

v′1 ∧ · · · ∧ v′d = (detA)(v1 ∧ · · · ∧ vd)

hence [v′1 ∧ · · · ∧ v′d] = [v1 ∧ · · · ∧ vd] in P(
∧d V ). So the map is well defined. We also assert

that the map is injective, and that the image is a closed subset of P(
∧d V ), without proof.

Hence Gd(V ) is identified with a subvariety of P(
∧d V ), giving it the structure of a variety.

Example 7.11. We examine G2(4) = G(1, 3), which is the “smallest” example of a Grass-
mannian which is not just projective space. Just to be safe, we assume charK 6= 2 for this
example. Let v1, v2, v3, v4 be a basis of V , so

v1 ∧ v2, v1 ∧ v3, v1 ∧ v4, v2 ∧ v3, v2 ∧ v4, v3 ∧ v4

is a basis of
∧2 V . So any ω ∈

∧2 V can be written uniquely as

ω =
∑
i<j

aijvi ∧ vj aij ∈ K
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So under the embedding G2(4) ↪→ P(
∧2 V ), the homogeneous coordinates of ω are

[a12 : a13 : a14 : a23 : a24 : a34]

The image of G2(4) can be characterized as ω ∈ P(
∧2 V ) such that ω ∧ ω = 0 (some proof

needed here, omitted). In terms of explicit coordinates, this condition is equivalent to

ω ∧ ω = 0 ⇐⇒
(∑

aijvi ∧ vj
)
∧
(∑

aijvi ∧ vj
)

= 0

⇐⇒ a12v1 ∧ v2 ∧ a34v3 ∧ v4 + a13v1 ∧ v3 ∧ a24v2 ∧ v4 + · · · = 0

⇐⇒ 2(a12a34 − a13a24 + a14a23)v1 ∧ v2 ∧ v3 ∧ v4 = 0

⇐⇒ 2(a12a34 − a13a24 + a14a23) = 0

Since we assumed char 6= 2, this is equivalent to

a12a34 − a13a24 + a14a23 = 0

All this to say, G2(4) is the solution to a quadratic homogeneous polynomial in P5, so it is
what is known as a quadric surface.

7.2 Flag varieties

Definition 7.12. Let V be an n-dimensional K-vector space. We define F(V ) to be the set
of complete flags in V .

F(V ) = {0 = V0 ( V1 ( · · · ( Vn = V }

This object is called a flag variety. The next proposition justifies calling it a variety.

Proposition 7.13. The map

F(V )→ G0(V )× · · · ×Gn(V ) V0 ⊂ · · · ⊂ Vn 7→ (V0, . . . , Vn)

is an embedding with closed image.

Remark 7.14. Using the previous proposition, F(V ) is given the structure of a projective
variety.

Remark 7.15. This is probably beyond our class, but GLn acts transitively on F(V ) as an
algebraic group, and the stabilizer of any given flag is a subgroup B which is conjugate to
upper triangular matrices in GLn. Such a subgroup is called a Borel subgroup. This also
implies that as a set, F(V ) ∼= GLn /B.

7.3 Quotients

We begin by recalling the universal property of the quotient in the category of groups.
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Proposition 7.16. Let G be a group and H ⊂ G a normal subgroup. Let π : G→ G/H be
the quotient map g 7→ gH. If α : G → G′ is a group homomorphism and H ⊂ kerα, then
there exists a unique group homomorphism α : G/H → G′ making the following diagram
commute.

G G′

G/H

π

α

α

Our next goal is to discuss the quotient of an algebraic group G by a closed subgroup H.
Ideally, this will result in an object denoted G/H, which is an algebraic group, with a
quotient map π : G→ G/H. Notice that we aren’t going to be restricted to the case where
H is a normal subgroup, which immediately alerts us to the fact that G/H will probably
not be a group, in general, but will usually only be a variety.

One issue is to decide what G/H should be as a set, although this is not terribly difficult.
If it is going to behave like a quotient, it should probably be something akin to a coset space.
If we aren’t going to require it to be a group, then it should at least be a variety, since we’re
interested in the category of algebraic groups.

The larger issue is to decide what is meant by “quotient map” π : G → G/H. As
noted above, G/H should have the structure of a variety, so at the very least π should be a
morphism of varieties. Usually quotients maps are surjective, so that should probably be a
requirement. One way to ensure that G/H is a “coset space” is to require that fibers of π
are cosets of H, or equivalently that π is constant on cosets of H, so that seems reasonable.

The gold standard for any categorical type construction is to have a universal property,
so the biggest goal of defining a quotient map should be that it results in a universal property
akin to Proposition 7.16.

Here is a botched first attempt at an “obvious” definition.

Definition 7.17 (Fake definition). Let H be a closed normal subgroup of an algebraic group
G. The quotient of G by H is the quotient in the category of groups (denoted G/H), and
it has the structure of an algebraic group via... something.

For whatever reason, this is not a satsifactory definition. The first reason is somewhat
obvious - it is not so clear how to make G/H into a variety, and we would need to do so in
a way that is compatible with the group structure.

Basically, this issue is that while quotients in the category of groups are well-behaved
(we know what conditions on H are needed for it to exist), but in the category of varieties
quotients are not so well-behaved. That is to say, sometimes the set which is the obvious
choice for a quotient of varieties is not an object in the category of varieties.

Given all this discussion, the subtleties of the next definition are somewhat more expected.

Definition 7.18 (Real definition). Let G be an algebraic group and H ⊂ G a closed sub-
group. A pair (π, V ) where V is a variety and π : G → V is a morphism of varieties is a
quotient of G by H if

1. The fibers of π are left5 cosets of H in G. In particular, π is surjective.

5Right cosets may also be used, not a big difference.
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2. π is an open map.

3. If U ⊂ V is open, then
π∗(K[U ]) = K[π−1(U)]H

Note that π has most of the properties we mentioned - it is constant on cosets of H, it is
surjective, and it is a morphism of varieties. The universal property remains to be seen.

Remark 7.19. The last condition is somewhat mysterious, so we spell it out more. H acts
on G by left multiplication,

H ×G→ G (h, g) 7→ h · g = hg

so H also acts on K[G],

H ×K[G]→ K[G] (h, f) 7→ h · f = ρ∗hf

Now consider U ⊂ V . Since the fibers of π are cosets of H, π−1(U) is a union of left cosets of
H. We want to say that K[π−1(U)] is an H-invariant subspace of K[G]. We need to check
that if f ∈ K[π−1(U)] then h · f ∈ K[π−1(U)]. For x ∈ π−1(U),

h · f(x) = ρ∗hf(x) = f(xh)

Since x, xh are in the same coset of H and π−1(U) is a union of left cosets of H, x ∈ π−1(U)
implies xh ∈ π−1(U), so h · f ∈ K[π−1(U)]. Thus K[π−1(U)] is an H-invariant subspace,
meaning it makes sense to talk about an action of H on K[π−1(U)].

H ×K[π−1(U)]×K[π−1(U)] (h, f) 7→ h · f = ρ∗hf

Hence it also makes sense to talk about K[π−1(U)]H , as in the previous definition.
Below, we also depict some of this with commutative diagrams below. The maps res

denote restriction, for example, if f ∈ K[V ] then res(f) = f |U .

G V K[G] K[V ]

π−1(U) U K[π−1(U)] K[U ]

π

res res

π∗

π

π∗

From this picture, we see that π∗(K[U ]) maps to some subset of K[π−1(U)], which is a priori
not the same as Kπ−1(U)]H . If π is a quotient map, then these things must be the same.

Example 7.20. If G1, G2 are algebraic groups, then the projection

π : G1 ×G2 → G1 (x1, x2) 7→ x1

is a quotient of G1 × G2 by G2 (by G2 as a subgroup we obviously mean 1 × G2). For the
purpose of familiarizing ourselves with the definition, let’s verify this, especially focusing on
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condition 3. It is clear that the fibers are cosets of 1 × G2. If A ⊂ G1 × G2 is open, then
(G1 ×G2) \ A is closed. Also, for any y ∈ G2, G1 × y ⊂ G1 ×G2 is closed, and

G1 \ π(A) =
⋂
y∈G2

π ((G1 × y) \ A)

The right hand side is an intersection of closet sets so it is closed, so π(A) is closed in
G1. Now for the mysterious 3rd condition. Let U ⊂ G1 be open. We need to check that
π∗K[U ] = K[π−1(U)]1×G2 .

G V K[G] K[V ]

π−1(U) U K[π−1(U)] K[U ]

π

res res

π∗

π

π∗

The subgroup 1×G2 acts on K[π−1(U)] as follows. For α ∈ K[π−1(U)] and (x, y) ∈ π−1(U)
and z ∈ G2,

((1, z) · α) (x, y) = α(x, yz)

If f ∈ K[U ] then πf (x, y) = f(x) for all (x, y) ∈ G1 ×G2. So

((1, z) · π∗f) (x, y) = f(x, yz) = f(x) = π∗f(x, y)

Thus (1, z) · π∗f = π∗f , so π∗f ∈ K[π−1(U)]1×G2 , so π∗K[U ] ⊂ K[π−1(U)]1×G2 . For the
reverse inclusion, let α ∈ K[π−1(U)]1×G2 . Then for all z ∈ G2, (x, y) ∈ π−1(U),

(1, z) · α = α =⇒ ((1, z) · α) (x, y) = α(x, yz) = α(x, y)

Hence α̃ : U → K given by α̃(x) = α(x, y) is independent of y, and π∗α̃ = α, so α ∈ π∗K[U ].
This establishes the opposite inclusion we needed, so π∗K[U ] = K[π−1(U)]1×G2 .

Example 7.21. A flag variety F(V ) is the quotient of GLn by a Borel subgroup B.

Proposition 7.22 (Universal property of quotients). If (π, V ) is a quotient of G by H, and
α : G → G′ is a homomorphism of algebraic groups such that α is constant on cosets of H
(equivalently, H ⊂ kerα), then there is a unique morphism of varieties α : V → G′ making
the following diagram commute.

G G′

V

π

α

α

Proof. (Sketch) There is only one reasonable way to construct α so that the diagram com-
mutes. Since π is surjective, it suffices to define α on the image of π.

α(π(g)) = α(g)

Since the fiber of π(g) is the coset gH and α(gH) = α(g), this is well defined. Uniqueness
of α is clear. The difficulty is now to show that α is a morphism of varieties. I don’t know
how to do this, so I’ll just leave this here.
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Remark 7.23. Assuming the universal property above, if a quotient exists, then clearly the
object V is unique up to isomorphism and the morphism π is also unique up to isomorphism
(of morphisms, meaning a certain commutative triangle).

Definition 7.24. Let G be an affine algebraic group, acting on a variety V (as an algebraic
group). For v ∈ V , let

Gv = stab(v) = {g ∈ G : gv = v}

The orbit map associated to v is the morphism of varieties

π : G→ V g 7→ gv

Notice that (π, V ) has some of the properties required of a quotient of G by Gv. The fibers
are cosets of Gv, and π is an open map, although it takes some proving. The last property,
that

π∗K[U ] = K[π−1(U)]Gv

does not hold in general, but does “usually” hold. Our next goal is to make this more precise,
by spelling out an equivalent condition in terms of tangent spaces.

Remark 7.25. Let α : U → V be a morphism of varieties. Recall that for u ∈ U , we define
the tangent space TuU to be the set of derivations of K[U ] at u, and that the differential of
α at u is given by

(dα)u : TuU → Tf(u)V (dα)u(D)(f) = D(f ◦ α)

Proposition 7.26. Let G be an algebraic group acting on a variety V . Fix v ∈ V , and
let π : G → Gv be the orbit map. Then (π, V ) is a quotient of G by Gv if and only if the
differential

(dπ)1 : T1G→ TvV

6 is surjective. In particular, if charK = 0, this is always surjective.

Theorem 7.27 (Existence of quotients). Let G be an affine algebraic group and H ⊂ G a
closed subgroup. Then the quotient of G by H exists. If H is normal, then G/H is an affine
algebraic group.

Remark 7.28. We give no proof of the previous theorem, but we can say a little bit about
the method of proof. The quotient G/H is realized via an orbit map. The trick is to choose
a finite dimensional vector space V which has a G-action so that H is the stabilizer of some
v ∈ V . Then consider the orbit map π : G→ V, g 7→ gv, and show that (π, V ) is a quotient
of G by H. The proof is very heavy in algebraic geometry.

Lemma 7.29 (Compatibility of quotient with product). Let G,G′ be algebraic groups with
H ⊂ G a closed subgroup. Then

G×G′

H × 1
∼=
G

H
×G′

61 refers to the identity element of G.
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Proof. Let π : G × G′ → G×G′
(H×1 be the quotient map and η : G → G

H
be the quotient map.

Let ι : G× 1→ G×G′ be the inclusion.

G× 1 G×G′

G
H
× 1 G×G′

H×1

ι

η×1 π

The map π is constant on cosets of H × 1, so ι ◦ π is constant on cosets of H × 1, so by the
universal property of quotients there is a unique morphism α : G

H
× 1 → G×G′

H×1 making the
square commute. Similarly, by the universal property, there is a unique morphism β going
the other way to make the square commute.

G× 1 G×G′

G
H
× 1 G×G′

H×1

ι

η×1 π

α

β

By uniqueness of α, β, they must be inverses, so we obtain the desired isomorphism.

7.4 Borel fixed point theorem

This section is all about the long proof of the Borel fixed point theorem, and several powerful
corollaries. First we need an algebraic geometry lemma.

Lemma 7.30. Let G be a connected affine algebraic group acting transitively on homogeneous
varieties V1, V2.

7 Let f : V1 → V2 be a morphism of G-varieties. Suppose f has finite fibers.
If V2 is complete, then V1 is also complete.

Proof. Omitted.

Theorem 7.31 (Borel fixed point theorem). If G is a connected, solvable, algebraic group
acting on a complete variety V , then there is a fixed point for the action.

Proof. We induct on the dimension of G. The case dimG = 0 is clear, since in this case G
is trivial, since it is connected. Now consider dimG > 0.

Since G is solvable, the commutator subgroup DG = [G,G] is a proper subgroup. It is a
closed subgroug, so dimDG < dimG. Also, it is connected and solvable. Thus by induction
hypothesis, there is a fixed point. That is, the following set is nonempty.

W = V DG = {v ∈ V : gv = v, ∀g ∈ DG}

We want to show that W is a subvariety of V . Consider the product variety DG × V × V
and its closed subvarieties

A = {(g, v, gv) : g ∈ DG} B = {(g, v, v) : g ∈ DG}
7Homogeneous means that V1, V2 are roughly quotients of G.
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Since A,B are closed, A ∩B is closed, and W is the image of A ∩B under the projection

DG× V × V → V (g, v, w) 7→ w

Since this projection is a closed map, W is closed, so it is a subvariety of V . Now we claim
that W is (setwise) invariant under the action of G. For h ∈ DG, g ∈ G,w ∈ W , we have

h(gw) = gg−1h(gw)

Since DG is a normal subgroup, g−1hg ∈ DG, so g−1hgw = w, so

h(gw) = g(g−1hg)w = gw

Thus gw ∈ W , so W is (setwise) G-invariant. Now watch carefully, because the next step

is a somewhat confusing reduction/replacement. Let W̃ ⊂ W be the smallest dimensional

orbit of G acting on W , so that W̃ is closed. Now G is acting on W̃ , and the DG-action on
W̃ is trivial. We now replace our original V by this W̃ , and just seek to find a fixed point of
G in W̃ . This will be a fixed point in V , which is what we need to complete the proof.

So the situation now is: G acts on a variety V , and DG acts trivially on V , and we want a
fixed point for G to complete the induction. Let v ∈ V and Gv = stab(v) = {g ∈ G : gv = v},
and consider the orbit map

η : G→ V g 7→ gv

This is constant on cosets of Gv in G. By existence of quotients, there is a quotient G/Gv

(more properly denoted (π,G/Gv) and by the universal property there is an isomorphism of
varieties

φ : G/Gv → V gGv 7→ gv

Since Gv is normal in G, G/Gv is an affine algebraic group. Now we use Lemma 7.30. Since
φ is a bijection and V is complete, G/Gv is also complete by the lemma.

Since G/Gv is an affine algebraic group, being complete means it is a finite set of points,
and since it is connected, it is a single point. Thus G/Gv = {e} so G = Gv. That is to say,
v is a fixed point of G. This completes the induction, and hence the proof.

One consequence of the Borel fixed point theorem is that we can now prove the Lie-Kolchin
theorem, which we stated earlier.

Theorem 7.32 (Lie-Kolchin). Let G be a connected solvable closed subgroup of GL(V ).
Then there is a complete flag in V which is fixed by G.

Proof. G acts on F(V ) and F(V ) is complete, so by the Borel fixed point thereom there is
a fixed flag.

8 Borel subgroups

Definition 8.1. Let G be a connected affine algebraic group. A Borel subgroup is a
maximal connected solvable closed subgroup of G. (By maximal, we mean maximal with
respect to inclusion among connected solvable subgroups of G.)
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Remark 8.2. Every connected algebraic group has a Borel subgroup, just using maximality
and dimension considerations.

Example 8.3. Let G = GL(V ), and let B be the subgroup of upper triangular matrices. B
is the prototypical example of a Borel subgroup.

Remark 8.4. Any two Borel subgroups B,B′ of GL(V ) are conjugate, just by a change of
basis matrix. This follows from the Lie-Kolchin theorem.

To explain this a bit more, choose a complete flag in V which B fixes (using Lie-Kolchin).
So with respect to the basis defined by this flag, B is the subgroup of upper triangular
matrices. Choose another flag which B′ fixes, so B′ is upper triangular matrices in a different
basis. Then conjugating G by the change of basis matrix sends B to B′. By maximality, the
conjugate of B is all of B′.

Our next goal is to extend the previous remark to a general algebraic group G. That is,
we want to show that any two Borel subgroups are conjugate. Without thinking too hard,
one wonders if this might be easy, since G can be embedded in some GL(V ), and the Borel
subgroups B,B′ can be embedded into the upper triangular subgroup in differing bases of
V . However, it is not clear how to proceed form here, and the argument halts.

Lemma 8.5. Let G be a connected affine algebraic group and B a Borel subgroup of maximal
dimension. Then there is a representation

ρ : G→ GL(V )

so that there is a one-dimensional subspace W1 = span(w1) ⊂ V with B = stab(W1), and so
that

G/B → Gw1 = orb(w1) xB 7→ xw1

is an isomorphism of varieties.

Proof. Only a somewhat loose sketch of a proof was given in class, so I have left it out.

Theorem 8.6. Let G be a connected affine algebraic group.

1. If B is a Borel subgroup, then G/B is projective, and hence complete.

2. Any two Borel subgroups of G are conjugate. That is, for Borel subgroups B,B′, there
exists g ∈ G such that gBg−1 = B′,

Proof. Done it class but very confusing. Maybe I’ll get back to this some day.

Corollary 8.7. Let P be a closed subgroup of a connected affine algebraic group G. The
following are equivalent.

1. The quotient G/P is a complete variety.

2. P contains a Borel subgroup.
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Proof. (1) =⇒ (2) Let B be a Borel subgroup of G. G acts on G/P by left translation,
and we restrict this action to B.

B ×G/P → G/P (b, gP ) 7→ bgP

Since G/P is complete, we can use the Borel fixed point theorem 7.31 to obtain a fixed point
gP , so for all b ∈ B,

bgP = gP =⇒ g−1bgP = P =⇒ g−1bg ∈ P =⇒ g−1Bg ⊂ P

Since g−1Bg is a conjugate of B, it is a Borel subgroup, hence P contains a Borel subgroup.
(2) =⇒ (1) Let B ⊂ P be a Borel subgroup. Let η : G → G/P and π : G → G/B be

the respective quotient maps. Since η is constant on cosets of P it is also constant on cosets
of B. So by the universal property of quotients, we get a morphism G/B → G/P fitting
into the following commutative diagram

G G/P

G/B

η

π π

Since η is surjective, π must also be surjective. Since B is a Borel subgroup, G/B is complete,
and then because G/P is a homomorphic image of a complete variety, it is also complete.

Definition 8.8. A subgroup P of a an algebraic group G satsifying the equivalent condi-
tions above is a parabolic subgroup. Note that it is immediate that a minimal parabolic
subgroup is a Borel subgroup.

Recall that a torus (plural tori) in an algebraic group is a subgroup T which is diagonalizable
and connected.

Corollary 8.9. Let G be a connected affine algebraic group.

1. Any two maximal tori in G are conjugate.

2. Any two maximal connected unipotent subgroups of G are conjugate.

Proof. (1) Let T, T ′ be maximal tori, so they are abelian, hence solvable. So they are each
contained in some Borel subgroup, that is, there are Borel subgroups B,B′ of G such that
T ⊂ B, T ′ ⊂ B′. We know B,B′ are conjugate, so B contains a conjugate of T ′. So may as
well assume T, T ′ ⊂ B, by replacing T ′ with its conjugate in B. Now by part (3) of Theorem
7.2, since T, T ′ are now maximal tori inside a solvable connected algebraic group, they are
conjugate.

(2) Let U be a maximal connected unipotent subgroup, so U is solvable. So U is contained
in some Borel subgroup B. In particular, U ⊂ BU , that is, U is contained in the unipotent
subgroup of B. By maximality of U , U = BU . If U ′ is another maximal connected unipotent
subgroup with U ′ ⊂ B′, then U ′ = B′U . Since B,B′ are conjugate, and conjugating takes
unipotent elements to unipotent elements, the same conjugation takes U = BU to U ′ =
B′U .
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Corollary 8.10. Let G be a connected affine algebraic group.

1. If α : G → G is a homomorphism of algebraic groups such that α|B = IdB for some
Borel subgroup B, then α = IdG.

2. ZG(B) ⊂ ZG(G), hence ZG(B) = ZG(G).

Proof. (1) Consider the morphism of varieties (not generally a group homomorphism)

φ : G→ G x 7→ α(x)x−1

We claim that φ is constant on cosets of B. Let gB be a coset, and let g, g′ ∈ gB, so g′ = gb
for some b ∈ B. Then

φ(g′) = α(gb)(gb)−1 = α(g)α(b)b−1g−1 = α(g)bb−1g−1 = α(g)g−1 = φ(g)

So φ is constant on cosets of B. Thus by the universal property of quotients φ factors through
the quotient G/B in the following commutative triangle.

G G

G/B

φ

π
φ

Since G is connected, G/B is also connected, hence irreducible. Since G/B is also complete
and G is affine, φ is constant, hence imφ = imφ = {e}. Hence α = IdG.

(2) Note that the inclusion ZG(G) ⊂ ZG(B) is always true for any subgroup B of a group
G. If x ∈ ZG(B), apply (1) to the morphism

α : G→ G g 7→ xgx−1

Then α|B = Id by choice of x, hence by (1) α = Id |G, which is to say, x ∈ ZG(G).

Remark 8.11. A similar property to the previous corollary holds more generally for group
actions on affine varieties. That is, if a connected affine algebraic group G acts on an affine
variety V , and v ∈ V is fixed by a Borel subgroup B, then v is fixed by all of G. The proof
of this is similar to the proof of the previous corollary.

Lemma 8.12. Let N be a nontrivial nilpotent group. Then Z(N) is nontrivial.

Proof. This is a standard fact, but the proof is short so we include it here. Let N0 = N,N1 =
[N,N ], Nk+1 = [Nk, N ]. Since N is nilpotent, there exists n so that Nn is trivial. Choose n
so that Nn is trivial but Nn−1 is not trivial. Then because Nn = [Nn−1, N ] is trivial, for all
x ∈ Nn−1 and all y ∈ N ,

xyx−1y−1 = 1 =⇒ xy = yx =⇒ x ∈ Z(N) =⇒ Nn−1 ⊂ Z(N)

Since Nn−1 was chosen to be nontrivial, Z(N) is nontrivial.
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Corollary 8.13. Let G be a connected affine algebraic group. If a Borel subgroup B is
nilpotent, then G = B (hence G is nilpotent).

Proof. We proceed by induction on the dimension of B. If dimB = 0, then since B is
connected it is a point, and G/B ∼= G. Since G/B is complete and irreducible and G is
affine, this forces G = {e} = B.

Now consider dimB ≥ 1. Since B is nilpotent, it has nontrivial center, so there is a
nontrivial closed subgroup C ⊂ Z(B) with dimC ≥ 1. By the previous corollary, C ⊂ Z(G),
in particular, C is a normal subgroup, so G/C is a connected affine algebraic group. We
claim that B/C is a Borel subgroup of G/C. Consider the composition of quotient maps

G→ G/C → G/C

B/C

Let η : G → G/C
B/C

denote this composition. Then η is constant on cosets of B, so by the

universal property of quotients, it factors through G/B as in the following diagram.

G G/C
B/C

G/B

η

η

Since B is a Borel subgroup G/B is complete, and since G/C
B/C

is a homomorphic image of

a complete variety, it is complete. We know that B/C is connected and solvable, so by
Corollary 8.7, B/C contains a Borel subgroup of G/C. Since it is already connected and
solvable, by maximality it is a Borel subgroup of G/C.

Now we can complete the induction. We have dimB/C < dimB and B/C nilpotent, so
by induction hypothesis, B/C = G/C hence B = G.

8.1 Cartan subgroups

Throughout this, we need G to be a connected algebraic group. If we forget to mention that
G is connected at any point, it is relatively safe to assume that it is included as a hypothesis.

Definition 8.14. Let G be a connected algebraic group. A closed subgroup C ⊂ G is a
Cartan subgroup if C = ZG(T )0 for some maximal torus T .

Remark 8.15. We claim any two Cartan subgroups ofG are conjugate. Let C = ZG(T )0, C ′ =
ZG(T ′)0 for two maximal tori T, T ′. By Corollary 8.9, T, T ′ are conjugate, T ′ = gTg−1 for
some g ∈ G. Then

ZG(T ′) =
{
x ∈ G : xt′x−1 = t′, ∀t′ ∈ T ′

}
=
{
x ∈ G : xgtg−1x−1 = gtg−1, ∀t ∈ T

}
=
{
x ∈ G : (g−1xg)t(g−1x−1g) = t, ∀t ∈ T

}
=
{
x ∈ G : (g−1xg)t(g−1xg)−1 = t, ∀t ∈ T

}
= gZG(T )g−1
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Thus
C ′ = ZG(T ′)0 = (gZG(T )g−1)0 = gZG(T )0g−1 = gCg−1

so C,C ′ are conjugate.

Proposition 8.16. Let G be a connected affine algebraic group and C = ZG(T )0 a Cartan
subgroup where T is a maximal torus. Then T is the unique maximal torus in C, hence T
is the unique maximal torus so that C = ZG(T )0.

Proof. It is clear that T is a maximal torus in C, and that T is normal in C. Then because
T is normal in C, the only conjugate of T in C is itself. Since all maximal tori in C are
conjugate, this shows T is the unique maximal torus in C.

Corollary 8.17. Let G be a connected affine algebraic group and C a Cartan subgroup.
Then C is nilpotent.

Proof. Let C = ZG(T )0 be a Cartan subgroup with T a maximal torus. Choose a Borel
subgroup B of C with

T ⊂ B ⊂ C = ZG(T )0

This exists because by definition B is a maximal connected solvable group, and T is a
connected solvable subgroup. By part (3) of Theorem 7.2, B is a semidirect product of T
and BU . We claim that it is in fact a direct product. To show this, it suffices to show that
T ∩BU = {e}. But this is clear because every element of T is semisimple, and every element
of BU is unipotent, and the only element of an algebraic group which is both semisimple and
unipotent is the identity. Thus B = T ×BU .

Since T is abelian, it is nilpotent, and BU is also nilpotent. Hence B is nilpotent, so by
Corollary 8.13, B = C hence C is nilpotent.

Lemma 8.18. Let C be a Cartan subgroup of a connected affine algebraic group G. Then
there exists t ∈ C such that {

xC ∈ G/C : x−1tx ∈ C is finite
}

Proof. Let C = ZG(T )0 with T a maximal torus. By Corollary 6.38, there exists t ∈ T such
that ZG(t) = ZG(T ). We will eventually show that this is the required t.

If C ′ = ZG(T ′)0 is any Cartan subgroup containing t, then t ∈ C ′ = ZG(T ′)0 hence
T ′ ⊂ ZG(t) = ZG(T ). Since T ′ is connected, ′ ⊂ ZG(T )0 = C. Hence by uniqueness
(Proposition 8.16), T = T ′, C = C ′. All this to say, C is the unique Cartan subgroup
containin t.

Now for x ∈ ZG(t) = ZG(T ) we have x−1tx ∈ C hence t ∈ xCx−1. Since xCx−1 is also
a Cartan subgroup containing t, by uniqueness xCx−1 = C. Thus x ∈ NG(C) ⊂ NG(T ).
By part (5) of Theorem 7.2, NG(T )0 = ZG(T )0 = C. That is, if x ∈ NG(T )0 then xC = C,
so the number of distinct cosets xC with x ∈ vtx ∈ C is bounded above by the size of
NG(T )/NG(T )0. Since this latter quantity is finite, the number of such xC is finite, as
claimed.
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Remark 8.19. The following is a minor fact in point-set topology which we will need in the
next proof. If η : X → Y is a surjective open map, and Z ⊂ Y such that η−1(Z) is closed,
then Z is closed. We give a picture, then some more explanation.

X Y

η−1(Z) Z

η

η

Because η−1(Z) is closed, its complement X \ η−1(Z) is open. Then because η is surjective,

η(X \ η−1(Z)) = Y \ Z

Since η is an open map, this shows Y \ Z is open, hence Z is closed.

The next result was originally viewed as a major result, though now it is called a lemma. In
any case, the proof is long and arduous.

Lemma 8.20 (Density lemma/Borel density theorem). Let G be a connected affine algebraic
group. The union of all Cartan subgroups of G contains a dense open subset of G.

Proof. Fix a Cartan subgroup C = ZG(T )0 with T a maximal torus. Since all Cartan
subgroups are conjugate, we need to show that

K =
⋃
g∈G

gCg−1

contains an open dense subset of G. Consider

S0 =
{

(x, y) ∈ G×G : x−1yx ∈ C
}

Note that S0 is closed in G × G because it is the preimage of C under the morphism (of
varieties)

G×G→ G (x, y) 7→ x−1yx

We also claim S0 is irreducible. To see this, consider the morphism

θ : G×G→ G×G (x, y) 7→ (x, xyx−1)

Then observe

θ(G× C) =
{

(x, xyx−1) ∈ G×G : x ∈ G, y ∈ C
}

= {(x, z) ∈ G×G : x ∈ zx ∈ C, x ∈ G}
= S0

Since G,C are connected, G×C is connected, hence irreducible. Then since S0 is the image
of G × C under a morphism of varieties, S0 is also irreducible. We also note that S0 is a
union of some left cosets of C × 1 in G×G. That is, if (x, y) ∈ S0, then (xc, y) ∈ S0, since

x ∈ yx ∈ C =⇒ (xc)−1yxc = c−1x−1yxc ∈ C
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By Lemma 7.29, quotients and products are compatible, which in our case we apply to obtain
an isomorphism

G×G
C × 1

∼=
G

C
×G

In particular, the following is a quotient map.

η : G×G→ G/C ×G (g, g′) 7→ (gC, g′)

So η is a surjective open map. Now we apply Remark 8.19 in the case Z = η(S0). In this
instance, η−1(Z) = η−1(η(S0)) is closed as it is a union of coset/translations of S0, which is
closed. So by the remark, η(S0) is closed in G

C
×G. Let S = η(S0).

S =
{

(xC, y) ∈ G/C ×G : x−1yx ∈ C
}

Now consider the two projections

p1 : S → G/C (xC, y) 7→ xC

p2 : S → G (xC, y) 7→ y

We finally have some justification for why this set S might be related to the original claim,
because

p2(S) = K =
⋃
g∈G

gCg−1

We want to show that p2(S) contains a dense open subset of G, though first we need to
establish some dimension facts using p1. It is clear that p1 : S → G/G is surjective, since
p1(xC, 1) = xC. Also, the fiber over x0C is

p−11 (x0C) =
{

(x0C, y) ∈ G/C ×G : x−10 yx0 ∈ C
}

=
{

(x0C, y) ∈ G/C ×G : y ∈ x0Cx−10

}
∼= x0Cx

−1
0

So each fiber has equal dimension, equal to the dimension of C. Using a standard result
about fiber dimensions for dominant morphisms of varieties,

dimC = fiber dimension = dimS−dim p1(S) = dimS−dimG/C = dimS−(dimG−dimC)

Rearranging this easily gives dimS = dimG. This finishes our use of p1, now we consider
p2 : S → p2(S). Every variety is thick in itself, so S is thick in itself, and the image of a
thick subset is thick, so p2(S) is thick, which means that p2(S) contains a nonemtpy open
subset of p2(S), which must then be dense. Recall that

p2(S) = K =
⋃
g∈G

gCg−1

So if we prove that p2(S) = G, then p2(S) = K contains a dense open subset of G and
the lemma is proved. As a further reduction, if we prove that dim p2(S) = dimG, then
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dim p2(S) = dimG and since p2(S) is closed and irreducible, it then follows that p2(S) = G.
So it suffices to prove dim p2(S) = dimG.

Now using Lemma 8.18, there exists t ∈ C such that{
xC ∈ G/C : x−1tx ∈ C is finite

}
is a finite set. That is, the fiber

p−12 (t) =
{

(xC, t) ∈ G/C ×G : x−1tx ∈ C
}

is finite. So the general fiber is finite, by upper semi-continuity of fiber dimension. Thus

dimS = dim p2(S) = dimG

Hence the lemma is proved.

Remark 8.21. The proof is actually more general than the statement. Note that no proper-
ties of C were used other than it being a subgroup satisfying the conclusion of Lemma 8.18.
So the proof actually shows that any closed subgroup satisfying the conclusion of Leamm
8.18 has the same property, namely that the union of all conjugates contains a dense open
subset of G.

Lemma 8.22 (Closure lemma). Let G be a connected affine algebraic group acting on a
variety V . Let H ⊂ G be a parabolic subgroup, and let W ⊂ V be a closed subset which is
invariant under H. Then GW 8 is closed in V .

Proof. Let
S =

{
(xH, v) ∈ G/H × V : x−1v ∈ W

}
First, we verify that this is well defined. To do so, we need to check that the condition
x−1v ∈ W does not depend on the choice of coset representative. If x, x′ are both coset
representatives for the same coset, then x′ = xh for some h ∈ H, so

x−1v ∈ W =⇒ (x′)−1 = (xh)−1 = h−1x−1 ∈ hW = W

since W is invariant under H. So S is well defined. Now consider the morphism

f : G× V → V (x, v) 7→ x−1v

Since W is closed, f−1(W ) is closed. Also consider the quotient map

π : G× V → G/H × V (x, v) 7→ (xH, v)

Then S = π(f−1(W )). Then by Remark 8.19, since π is a surjective open map and f−1(W )
is closed, S = π(f−1(W )) is also closed. Consider the projection

p2 : G/H → V (xH, v) 7→ v

Since H is parabolic, G/H is complete, so this is a closed map. So p2(S) is closed in V .
Then note that p2(S) = GW .

8By GW , we mean any of the following equal sets.

GW =
⋃
g∈G

gW =
⋃

w∈W
Gw =

⋃
w∈W

orb(w)
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8.2 The union of Borel subgroups

Theorem 8.23. Let G be a connected affine algebraic group.

1. Every element of G is contained in a Borel subgroup. That is, if B is any Borel
subgroup, then

G =
⋃
g∈G

gBg−1

2. Every semisimple element of G is contained in a torus.

3. Every unipotent element of G is contained in a connected unipotent subgroup.

Proof. (1) Let B be a Borel subgroup. Every Cartan subgroup C is contained in some Borel
subgroup, so by the Density lemma 8.20,⋃

g∈G

gBg−1

contains a dense open subset of G. Note that B is a parabolic subgroup, so we may apply
Lemma 8.22 with G = V,W = H = B, and G acting on itself by conjugation. It is clear
that H is invariant under conjugation by itself.

G×G→ G (x, y) 7→ xyx−1

So by the lemma,

GB =
⋃
g∈G

gBg−1

is closed in G. Since we just observed that it also contains a dense open subset, it must be
all of G. (2) and (3) follow immediately from (1).

Example 8.24. In the case G = GLn(K), the previous theorem just says that every invert-
ible matrix is conjugate to an upper triangular matrix.

Remark 8.25. In part (2) of the previous theorem, the “semisimple” condition cannot be
dropped. That is to say, not every element is contained in a torus. The main obstruction
is the connectedness aspect. It is clear that every element is contained in some abelian
subgroup, but it may not be contained in a connected abelian subgroup (which would then
be contained in some torus). Concretely, then element

x =

(
−1 1
0 −1

)
∈ GL2(K)

is not contained in any connected abelian subgroup. In fact, the only connected subgroup
containing x is all of U2(K), the group of upper triangular matrices, which is far from abelian.
Details behind this are not especially important, so we leave them to the interested reader.

Before continuing on with corollaries of Theorem 8.23, we note a generalization, without
proof.
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Theorem 8.26. Any surjective group endomorphism of a connected algebraic group keeps
some Borel subgroup invariant.

Remark 8.27. Applying this to the endomorphism of conjugation, with some work, can
show that G is the union of all Borel subgroups, but we omit these details.

Now we have several major corollaries of the fact that a connected algebraic group is the
union of Borel subgroups.

Corollary 8.28. Let G be a connected algebraic group and B a Borel subgroup. Then
Z(B) = Z(G).

Proof. If x ∈ Z(B), then x ∈ ZG(B) = ZG(G) = Z(G) by Corollary 8.10. Hence Z(B) ⊂
Z(G). Conversely, suppose x ∈ Z(G). Then x ∈ B′ for some Borel subgroup B′ (by Theorem
8.23). Then B,B′ are conjugate, so B′ = yBy−1 for some y ∈ G; in particular, x = yby−1

for some b ∈ B. Then since x is central, b = y−1xy = xy−1y = x, hence x ∈ B.

Corollary 8.29. Let G be an algebraic group acting on an affine variety V . Let v ∈ V such
that stab(v) contains a maximal torus T . Then orb(v) is closed (in V ).

Proof. First, we deduce the general case from the connected case. Suppose the statement
holds for connected groups. Then observe that Gv = orb(v) is the finite union of copies of
G0v

9, so since G0v are all closed, Gv is also closed.
Now we may assume without loss of generality that G is connected. Let T be the

maximal torus contained in stab(v), and let B be a Borel subgroup containing T . Then B
is the semidirect product of T and BU (unipotent subgroup). Let S = Bv be the orbit of v
with the restricted action of B on V . Then

S = Bv = (BUT )v = BUv

since T ⊂ stab(v). Since S is the orbit of a unipotent group, it is closed by Proposition 6.6.
Then by Lemma 8.22, since G/B is complete, Gv is closed as Gv = GS.

Corollary 8.30. Let G be an affine algebraic group.

1. Any conjugacy class of semsimple elements is closed. 10

2. Any conjugacy class with nontrivial intersection with a Cartan subgroup is closed.

Proof. (2) We just need to show that the conjugacy class of any element of a Cartan subgroup
is closed. Let C = ZG(T )0 be a Cartan subgroup with T a maximal torus, and let x ∈ C. G
acts on itself by conjugation, and under this action T ⊂ stab(x), since x ∈ ZG(T ). Thus by
Corollary 8.29, the orbit of x is closed. But the orbit of x is precisely the conjugacy class of
x.

(1) Any semisimple element is contained in a torus (Theorem 8.23), so a semisimple
conjugacy class meets a Cartan subgroup, so by (2) the conjugacy class is closed.

9G0 is the identity component of our not-necessarily-connected algebraic group G.
10Since being semisimple is preserved by conjugating, one element in a conjugacy class being semisimple

is equivalent to all elements in the conjugacy class being semisimple.
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Corollary 8.31. If T is a torus in an algebraic group G, then ZG(T ) is connected. 11

Proof. Let x ∈ ZG(T ). Fix a Borel subgroup B, and let B′ be a Borel subgroup containing
x. B′ acts on G/B by left multiplication.12

B′ ×G/B → G/B (b′, gB) 7→ (b′g)B

Let W = fix(x) ⊂ G/B be the fixed points of x under this action. We claim W is closed.
Consider

x : G/B → G/B gB 7→ (xg)B

Now consider the graph of this, and the diagonal in G/B ×G/B.

∆ = {(gB, gB) ∈ G/B : g ∈ G}
Γx = {(gB, xgB) ∈ G/B ×G/B : g ∈ G} ⊂ G/B ×G/B

Since the projection map π1 : G/B×G/B → G/B, (g1B, g2B) 7→ g1B is surjective and G/B
is complete, π1 is a closed map. Hence π1(∆ ∩ Γx) is closed. But this is exactly fix(x) = W ,
hence W is closed. All of G acts on G/B in the same way as the above, now we consider the
restriction of this action to T , and we claim that T keeps W invariant.

T ×G/B → G/B (t, gB) 7→ (tg)B

We need to show that for t ∈ T and w = gB ∈ W , tw ∈ W = fix(x). Let t ∈ T and w ∈ W .
Then using the fact that x ∈ ZG(T ),

x(tw) = (xt)w = t(xw) = tw

Thus tw ∈ fix(x) = W , so T does keep W invariant as claimed. Thus T is a connected
solvable group acting on a projective variety W , so by the Borel fixed point theorem 7.31 it
has a fixed point gB ∈ W . That is, tgB = gB for all t ∈ T , hence g−1Tg ⊂ B, T ⊂ gBg−1.
Since gB ∈ fix(x), we also get g−1xg ∈ B, x ∈ gBg−1. That is, x and T are in the same
Borel subgroup B′′ = gBg−1.

Since x ∈ ZG(T ), x ∈ ZB′′(T ). By part (5) of Theorem 7.2, ZB′′(T ) is connected, so
ZB′′(T ) ⊂ ZG(T )0. Thus x ∈ ZG(T )0, proving ZG(T ) ⊂ ZG(T )0, hence ZG(T ) is connected.

Remark 8.32. The previous proof shows that if G is an algebraic group and H ⊂ G is a
closed connected solvable group and x ∈ ZG(H), then there is a Borel subgroup B containing
both x and H.

Remark 8.33. If C = ZG(T )0 is a Cartan subgroup, then C = ZG(T ) as it is already
connected.

11As a consequence, our definition of Cartan subgroups now looks rather silly. We defined a Cartan
subgroup to have the form C = ZG(T )0, but because of this corollary, ZG(T )0 = ZG(T ) for any torus T .

12It is worth checking that this is well-defined.
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Remark 8.34. Recall that a torus T is a connected, abelian subgroup consisting of semisim-
ple elements. The point of this remark is that the connectedness part is very important for
Corollary 8.31. That is to say, the conclusion is false if T is replaced by an abelian subgroup
S of semisimple elements, since such a subgroup may fail to be a torus. As an example,
consider G = PSL2(C) and the matrix 13

x =

(
i 0
0 −i

)
Let S be the subgroup of G generated by x, so S ∼= Z/4Z. One can show that ZG(S) is not
connected. In particular, it is the union of diagonal matrices along with matrices of the form(

0 z
−z−1 0

)
for z ∈ C. The diagonal matrices are isomorphic to Gm, which is connected.

Corollary 8.35. Let G be an algebraic group and t ∈ G be semisimple. Then every unipotent
element of ZG(t) is in ZG(t)0.

Proof. (Incomplete proof.) Let u ∈ ZG(t) be unipotent, and let x = tu. Since t, u commute,
this is the Jordan decomposition of x, by uniqueness. Let B be a Borel subgroup of G
containin x. Then x = tu is also the Jordan decomposition in B by uniqueness, so t, u ∈ B.
Since t, u commute, u ∈ ZB(t).

At this point, the notes assert that ZG(t) must be connected, by I don’t see why this is
the case. We can take T to be a torus in B containing t, and then ZB(T ) is connected by a
previous corollary. But then I don’t see why u ∈ ZB(T ). I don’t see how to finish the proof.
Apparently, we are meant to conclude that ZB(t) is connected and u ∈ ZB(t) ⊂ ZG(t)0,
hence ZG(t) ⊂ ZG(t)0.

8.3 Bruhat lemma

Definition 8.36. Let G be a group and H,K subgroups. The double coset space H\G/K
is the set

H\G/K = {HgK : g ∈ G}

where
HgK = {hgk : h ∈ H, k ∈ K}

Note that two double cosets HgK,Hg′K are equal if and only if there exist h ∈ H, k ∈ K
such that g′ = hgk. Another way to describe double cosets is via the action of H ×K on G
via

(H ×K)×G→ G g 7→ hgk

The double coset HgK is just the orbit of g under this action.

13Technically elements of PSL2(C) are equivalence classes of matrices, after quotienting out by the scalar
matrices. But we may somewhat reasonably conflate matrix representatives with their equivalence class,
which we do in this discussion.
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Remark 8.37. Double cosets have many of the properties of normal cosets, and many much
stronger properties which we don’t have space to discuss.

1. Two double cosets are either disjoint or equal.

2. G is the disjoint union of all the double cosets.

3. If H is the trivial subgroup, then double cosets H\G/K are in bijection with cosets
G/K. An analogous statement holds if K is trivial.

Lemma 8.38 (Bruhat lemma). Let G be a connected algebraic group.

1. Let T be a maximal torus in G and let B be a Borel subgroup with T ⊂ ZG(T ) ⊂ B.
Let Z = ZG(T ) and N = NG(T ). Then the map

i : Z\N/Z → B\G/B ZnZ 7→ BnB

is a bijection.

2. Any two Borel subgroups of G contain a common maximal torus.

Remark 8.39. Before proving anything, we should verify that the double coset map is well-
defined. Suppose ZnZ = Zn′Z with n, n′ ∈ N . Then n′ = z1nz2 for some z1, z2 ∈ Z. Then
since Z ⊂ B, the equality n′ = z2nz2 says that BnB = Bn′B. Thus i is well defined.

Proof. We do not give a full proof, we just prove (1) =⇒ (2). Let B1, B2 be Borel subgroups,
so they are conjugate, so there is g ∈ G so that B2 = gB1g

−1. Choose a maximal torus T so
that T ⊂ ZG(T ) ⊂ B1.

Consider the double coset BgB. By (1), this corresponds to a unique coset ZnZ under
the map i, meaning i(ZnZ) = BnB = BgB. That is to say, there exists n ∈ NG(T ) and
b1, b

′
1 ∈ ZG(T ) ⊂ B1 such that g = b1nb

′
1. Rearraning, we get b1 = g(b′1)

−1n−1. Since
b1 ∈ ZG(T ),

b1Tb
−1
1 ⊂ B1

Substituting we get
b1Tb

−1
1 = g(b′1)

−1n−1Tnb′1g
−1

Since n ∈ NG(T ), n−1Tn = T , so this simplifies to

b1Tb
−1
1 = g(b′1)

−1Tb′1g
−1

Now because b′1 and T lie in B, (b′1)
−1Tb′1 ⊂ B. Hence

b1Tb
−1
1 = g(b′1)

−1Tb′1g
−1 ⊂ gBg−1 = B2

Hence b1Tb
−1
1 is a maximal torus which is contained in B1 ∩B2.

In class we also gave a proof of (2) =⇒ (1), but it involved even more technical
rearrangements of group equations, so I have omitted it.
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9 Reductive and semisimple groups

Definition 9.1. Let G be an algebraic group. The radical R = R(G) is the maximal
connected solvable normal subgroup of G. The unipotent radical of G is the unipotent
subgroup of R, denoted RU .

Remark 9.2. The radical R is a semidirect product of a maximal torus in R with RU , since
RU is a connected, normal subgroup of R.

Definition 9.3. An algebraic group G is reductive if the unipotent radical RU is trivial.
That is, R is a torus.

Definition 9.4. An algebraic group G is semisimple if the radical R is trivial. That is,
G does not contain a normal abelian closed subgroup of positive dimension. (Obviously,
semisimple =⇒ reductive.)

Remark 9.5. If G is connected and reductive, then the radical R is contained in the center
Z(G). Why? Since R is normal, NG(R) is normal. Since R is connected, NG(R) = NG(R)0 =
ZG(R)0, hence G = ZG(R)0 so R ⊂ Z(G).

Remark 9.6. If G is a connected algebraic group, then G/R is semisimple. In fact, G
has a decomposition G = RG1 where G1

∼= G/R is semisimple. This is called the Levi
decomposition.

Example 9.7. In this example we show that GLn(K) is reductive. Note that it is not
semisimple, because the center is scalar matrices, which is isomorphic to Gm which has
dimension one.

We identify GLn(K) as GL(V ) where V is an n-dimensional K-vector space. Let R be
the radical. We want to show that R is a torus. Let {Vi} be the common eigenspaces of
R. This is nonempty because R is a solvable connected group (using the Borel fixed point
theorem 7.31).

We claim that the subspace
∑
Vi is left invariant by GL(V ). Let g ∈ GL(V ) and Vi be

an eigenspace for R. Let v ∈ Vi and r ∈ R, so rv = αv for some α ∈ K. Then

rgv = gg−1rgv = g(g−1rg)v

Since R is a normal subgroup, g−1rg ∈ R, so (g−1rg)v = λv for some λ ∈ K. Thus

rgv = gλv = λgv

so gv is also an eigenvector for r. That is, GL(V ) takes
∑
Vi to itself. Now, because GL(V )

acts transitively on V , the only invariant subspace is V , hence
∑
Vi = V . Hence V is

decomposable into eigenspaces for R, hence R is diagonalizable, hence R is a torus. Thus
GLn(K) ∼= GL(V ) is reductive.

Remark 9.8. The work of the previous example shows that the action of GL(V ) on V
induces an action of GL(V ) permuting the eigenspaces Vi, thus giving a morphism from
GL(V ) to the (finite) symmetric group of permutation of the Vi. Since GL(V ) is connected,
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the image of this morphism must be trivial, hence there is only one eigenspace Vi, namely all
of V . The only subgroup which has all of V as an eigenspace is the subgroup Gm of scalar
matrices, so the radical of GL(V ) is the subgroup of scalar matrices. The Levi decomposition
is GLn(K) is GL(V ) = R SLn(K).

Example 9.9. The groups SLn, SP2n, and SOn are semisimple.
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